
A OI4U5 991 CONSTPUCTION FNGI LERIG RESEARCH LA13 (ARMY) CHAMPA AN It F/ A/
I NTERAGLNCT Y/ TERGOVERNMENTAL C OORDINATION FOR ANVIROI-M"TAL PL--FTC~j
MAY 80 R D WFSST ER ,0 E FUTNAM

UNCLSSI I F.D ERLTR--8R N L

W " 11111 -2
4 0

UlIIII
flfl 1.2 I~I~~ jj~1.6

MICROCOPY RESOLUTION TEST CHART

"p i

construction I ,.-,.,--" A''"

engineering &Z
research TECHNCAL REPORTreeac may 1980

laboratory

INTERAGENCY/INTERGOVERNMENTAL
COORDINATION FOR ENVIRONMENTAL

PLANNING (HCEP): SYSTEMS CONSIDERATIONS

2OLEYEL-f
by

R.D. Webster
D.E. Putnam

DTIC
ELECTE
JUN 2 6 1980WSD

IRV

' ' pprve0 6 2 6 00-6
Approved for public release: distribution unlimited.

The contents of this report are not to be used for advertising, publication, or
promotional purposes. Citation of trade names does not constitute an
official indorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official Department
of the Army position, unless so designated by other authorized documents.

2i

DESTROY THIS REPORT WHEN ITIS NO LONGER NEEDED
DO NOT RETURN IT TO THE ORIGINA TOR

.__

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

II

REPORTni DCMNAINPAEBFR OMLTN O
READ INSTRUCTONS

NRAEPORT DTROCUENTATIOR-NATEBFR OMLTGFR

7.ite AUNRe UIO COTCC ORGATN ER~E

CONSTRUCTION ENGINEERNGORESEARCN=LABORATOR

VI CNROLNG EN A ME AND E ASDRES

14.MOITOIN AENC NME AORSS(I illerutfro, ontolin Ofic) I. ECRORIY CLAS. REORT NUB E Rol

15*UNSLASIDCTIO/DTIORAIN

IS. PERFRINTORNIST ATIEN NAME AND. ADDoR ESt0)RGA LMETRJC.TS

.S. PLM ARYNOE

P.O. ox405,Springfn, I eld VA12215

stat gOI O erN men AGENCY/~ NAE0ADE ifrn rmCnrligOfc) 1.SCRT LS.(fis eot

Apepr ima f r purpoeihi re porte distbo n do un mt ednzainad.omn

the D ln IT erENcy(ofnte srtonerent odi naio for EniomnalPann

CopieP requbtimnsase frorthtina irFochnviromnal Ploranin Buletic14

A9 KYWRSConduearetve ais Ito neesrndenti&~ roblem sociatzme ihte IE yse'
d iper entton orcm edprietsltos rlmnr aaaqie

envCromenta CLSSaCAnagementAE(Emm e eEte.

Block 20 continued.

1- y Air Force contractors were obtained and used as a basis for developing the soft.
ware structure necessary to handle these data. This report describes IICEP and
explains the development of the organization, structure, and software of the pilot
computerized system. It will form the basis for evaluating the system and further
clarifying the need for data base refinement and update.

UNCLASSIFIED
SICuiATY CLASICATION OF TIS PAGSUCMh D~e It

I
FOREWORD

This project was performed for the Department of the Air Force Engineering and

Services Center (AFESC), Tyndall AFB, FL, under Project Order Number S-79-26

dated 19 March 1979. CPT R. Hawkins was the project monitor.

The work was performed by the Environmental Division (EN), U.S. Army Con-

struction Engineering Research Laboratory (CERL), Champaign, IL

This research was made possible through the efforts of Air Force personnel and

the scientists and engineers of CERL. Administrative support and counsel were

provided by Dr. E.W. Novak, Acting Chief of EN.
COL L. Circeo is Commander and Director of CERL, and Dr. L.R. Shaffer is

Technical Director.

ACCESSION for

NT"S White Section

DoC Buff Section 0)
UNANNOUNCED
JUSTIFICATION

By

U ~sTRNTIAVAJIMUfl CM(
Dist. AMIUL and of ECW

3

CONTENTS

Page
DD FORM 1473 ... 1I
FOREWORD......................3

1 INTRODUCTION....................5
Background
Objective
Approach

2 THE IICEP PROGRAM...................................... 5

3 THE PILOT SYSTEM: ORANIZATION AND STRUCTURE S

4 COMMAND STRUCTURE.................................... 8
Selection Commands
Save and Restore Commands
List and Peek Commands
Help and Oult Commands

5 SUMMARY AND RECOMMENDATIONS 1

REFERENCES ... 12

APPENDIX A: Sample Data From IICEP Directory.................13s
APPENDIX B: Software Descriptions.......................... 17
APPENDIX C: Source Code 21

DISTRIBUTION

I I~~~~m ~- --. . ..- --...-

INTERAGENCYIINTERGOVERNMENTAL review and systemization of the Air Force's three-
COORDINATION FOR ENVIRONMENTAL volume directory-Interagency/ntergovernmental
PLANNING (IICEP): SYSTEMS Coordination for Environmental Planning (IICEP)-
CONSIDERATIONS developed to insure adequate coordination of Air

Force activities with state and local agencies respon-
sible for environmental planning issues as required

INTRODUCTION by Air Force Interim Planning Bulletin 14. Updating
the information in the current directory is a prob-

Background lem. Responsibilities of the listed agencies change
The U.S. Army Construction Engineering Re- constantly; furthermore, the directory-filling three

search Laboratory (CERL) has maintained an large binders-is physically awkward and incon-
extensive systems development program for Depart- venient to update because changes must be mailed to
ment of Defense (DOD) personnel to use in environ- all users. A computerized system could help remedy
mental assessment, planning, and management. these difficulties. Implementation of IICEP as a
These systems include the Environmental Technical new subsystem of ETIS will encourage maintenance
Information System (ETIS) and its subsystems'-the of current directories by simplifying retrieval of the
Environmental Impact Computer System (EICS) ,' contacts.
the Economic Impact Forecast System (EIFS), and
the Computer-Aided Environmental Legislative Objective
Data system (CELDS).4 These systems have been The primary purpose of this research was to
used extensively by both the Army and the Air Force. develop a pilot IICEP computerized system operat-
As a result of this cooperative effort, CERL has been ing in interactive mode on the same host computer
tasked with analyzing new areas for assisting users as ETIS and exhibiting the same user-oriented
and producing other systems which respond to these characteristics as the other ETIS subsystems. A
additional requirements and also function in the secondary objective was to identify any problems
same interactive mode as ETIS. This mode is ex- associated with the IICEP system's implementation
tremely beneficial from both developmental and under ETIS and to recommend solutions to these
operational standpoints.' For instance, one new problems.
application for the ETIS type of system has been the Approach

The documentation for IICEP was obtained from
'R.D. Webster, et al.. Development qf the Environmental

Technical Inlormation System, Interim Report E-52/ADA009668 AFESC. the data base was designed and developed.
(U.S. Army Construction Engineering Research Laboratory and an interactive retrieval program was designed
[CERL], April 1975). and implemented.

'Robert Baran and R.D. Webster, Interactive Environmental
Impact computer System (EICSi User Manual, Technical Report
N-80/ADA074890 (CERL. September 1979).

'R.D. Webster. L. Ortiz, R. Mitchell. and W. Hamilton, Devel-
opment of' the Economic Impact Forecast System (EIFS)-The THE IICEP PROGRAM
Multiplier Aspects. Technical Report N-35/ADA057936 (CERL.
May 1978); J.W. Hamilton and R.D. Webster, Economic Impact
Forecast System, Version 2.0: User's Manual Technical Report IICEP includes a three-volume directory of stateN-69/ADA073667 (CERL. July 1979).

'R.L. Welsh. User "uanual.tfr the Computer-Aided Environ- environmental planning agencies designed for use
mental Legislative Data System. Technical Report E-78/ by the three Air Force Regional Civil Engineers.
ADA019018 (CERL. November 1975): J. van Weringh, J. Patzer. Agencies located in all 50 states, Guam, and Puerto
R. Welsh. and R. Webster. Computer-Aided Environmental Rico are included. The listed agencies deal with
Legislative Data System (CELDS) User Manual, Technical Report issues from the following environmental categories:
N-56/ADA061126 (CERL. September 1978).

'B.W. Kernighan and J.R. Mashey. "Unix Programming I. General 7. Noise
Environment." SqfIware Practice and En,ironment. Vol 9, No. 1 2. Air Resources 8. Socioeconomics
(January 1979). pp 1-15: J. Zucker, K.H. Davis, and P.J. Plauger. 3. Energy 9. Solid Waste
Automated Software Design Tools: "Unix: A High Level Environ- 4. Health and Safety 10. Transportation
ment for the Development of Microprocessor-Based Systems."
"Using Unix for Development of Microprocessor-Based 5. Land Use 1i. Water
Systems."" Using Unix for Developing Microprocessor Software: 6. Natural Resources
A Case Study." "Unix in an Office Environment": presented at
Midcon 77 Electronic Show and Convention. Chicago. IL, 8-10 Table I gives the subdivisions of the I I major
November 1977, Electrical and Electronics Exhibitions, Inc. environmental categories.i5

Table I
Catego"la Breakout of liCEP

1. General 6. Natural Resources

Coordination Land Management and Grounds Maiptenance
Environmental Quality Fish and Wildlife
Environmental Impact Statements Recreation
A-95 Clearinghouse Forestry
Transportation Archaeology and Historic Preservation

Flood Control
2. Air Resources Oil and Gas

General 7. Noise

General
3. Energy

General 8. Socioeconomics;
Facility Siting Economic Development

4. Health and SafetyEdcto
Housing

General Local Government
Civil Defense Social Services
Occupational Health
Pesticides 9. Solid Waste
Radiation General
Butlding Codes
Safety 10. Transportation

S. Land Use General

PlanningAeronautics
Agriculture Hgwy
Coastal Zone Management 11. Water
Minerals and Geology

General
Water Resources Management

The IICEP directory contains information allow- puter-based retrieval system. The listings contained
ing the user to decide whether a particular environ- in the three volumes of contacts for the state environ-
mental planning issue falls under the responsibility mental planning agencies will be incorporated in the
of an agency, and lists the point of contact at each JICEP computer program at a later date.
agency. IICEP listings provide the agency's name
and function, address, telephone number, and con-

tact person, as shown by the examples in Appendix
A. Interim Air Force Environmental Planning Bulle- THE PILOT SYSTEM: i~
tins 14 and 15 have clarified the general concepts of O0RGANIZATION AND STRUCTURE
IICEP use and hierarchically organized the data
originally contained in the directory. However, For the three-volume directory of state environ-
CERL's research on IICEP has indicated that updat- mental planning agencies, Volume II of Interim Air
ing the information is the most serious problem Force Environmental Planning Bulletin 15, and the
with the directory and the computerized system, computerized system, the information in IICEP is
primarily because the jurisdictions and duties of organized around a unit of data called a "contact."
agencies identified in IICEP are vague and change A given contact consists of information about some
frequently. individual in the Government, and thus generally

lists a name, title, address, and phone number. In
Interim Air Force Environmental Planning Bulle- addition, a contact includes keyword data which

tin 15, Volume 11, lists environmental contacts for enable an IICEP user to locate the contacts of
Federal agencies. The JICEP pilot program used interest. The keywords currently fall into the follow-
these contacts as the basis for developing the com- ing seven categories.

6

1. "agency" 3. "region"

This category consists of the abbreviated name of This category consists of the names of the Federal
the 30 major agencies of the executive branch of the regions. Unfortunately, many Federal agencies have
Federal Government. For example, "doc" and adopted nonstandard regional divisions. Therefore,
"doa" are agency keywords corresponding to the these keywords must be taken in the context of the
Departments of Commerce and Agriculture. All appropriate Federal agency. The 10 standard
contacts belonging to the Department of Commerce Federal regions-"region 1" through "region 10"-
include "doc" as one of their keywords. A complete are included in this category, as well as regions like
list of the agencies and their corresponding keywords the "atlanta region" of the Department of Com-
is given below: merce.

Advisory Council on Historic Preservation ach
Civil Aeronautics Board cab 4. "state"
Community Services Administration csaDepartment of Agriculture doa This category consists of the 50 state names andDepartment of Commerce doa the term "us," which refers to the whole UnitedDepartment of Defense dod States. Users who seek contacts concerning someDepartment of the Interior doi issue in an individual state should retrieve the con-

Department of Justice doj tacts having that state as a keyword (such as Ohio,
Department of Labor dol "oh," or Alabama, "al"), as well as those havingDepartment of State dos "us" as a keyword.

Department of Transportation dot
Environmental Protection Agency epa
Energy Research and Development

Administration erd This category consists of the 11 general topics

Executive Office of the President exo listed in the following section.

Farm Credit Administration fca
Federal Energy Administration fea 6. "sub-topic"
Federal Maritime Commission fmcFederal Power Commission fpc This is a subcategory of the "topic" category. TheGeneral Services Administration gsa following list gives various topics; the subtopics

Department of Health, Education and under each are indented.
Welfare hew a. general

Department of Housing and Urban coordination
Development hud environmental quality

National Aeronautics and Space environmental impact statements/A-95 clear-
Administration nas inghouse

Nuclear Regulatory Commission nrc transportation
National Science Foundation nsf
National Transportation Safety Board nts b. air resources
Small Business Administration sba general air
Smithsonian Institution si c. energy
Treasury Department td general energy
Veterans Administration va facility siting
Water Resources Council wrc

d. health and safety

2. "sub-agency" general health and safety
civil defense

This category corresponds to the next level below occupational health
"agency" in the Government hierarchy. For ex- pesticides
ample, "bureau of the census" is a subagency key- radiation
word occurring in some of the contacts belonging to building codes
the Department of Commerce. safety

7

e. land use interagency/intergovernmental
planning coordination (a-95) a-95
agricultural joint use of military airfields juma
coastal zone management land management and landscape
minerals and geology development Imild

military construction program (programs) mcpp
f. natural resources military construction program

land management and ground maintenance (construction) mcpc
fish and wildlife military family housing mfh
recreation noise pollution np
forestry outdoor recreation and cultural resources orcr
archaeology and historic preservation pesticide use and control puc
flood control real property and acquisition rpa

real property disposal rpd
g. noise reducing flight disturbances rfd

general noise solid waste sw
water pollution wp

h. socioeconomics
economic development A
education COMMAND STRUCTURE
housing
local government This chapter discusses the commands available to
social services the IlCEP user. Appendices B and C provide the

software description and source code for IICEP,
i. solid waste respectively, if further clarification is necessary.

general solid Table 2 lists and briefly describes IICEP commands.

j. transportation Selection Commands
aeronautics
highways The IICEP system maintains a list of all contacts

in the data base. By using keywords with the selec-
k. water tion commands described below, a user can narrow

general this list to those contacts of interest.
water resources management

1. "find"
7. ".program"

The "find" command sets the list of contacts
This category contains the names of the 26 Air equal to those associated with a given keyword. For

Force programs. example, "find doc" sets the current list to con-
tain all the contacts in the Department of Corn-

air installation compatible use zone aicuz merce. The find command can be used to retrieve
air pollution ap a specific contact. For example, "find # 162" brings
airfield and airspace criteria aac the contact number 162 to the current list.
coastal zone management czm
compliance with pollution controls cwpc 2. "and"
comprehensive plan cp
energy conservation ec The "and" command limits the current list to con-
environmental impact assessments and tacts already in the list and associated with a given

statements eias keyword. For example, suppose a user types
explosive safety criteria esc
fish and wildlife and endangered species fwes "find hew"
forest management fn
grazing and agricultural outleasing gao "and radiation"

8

Table 2

Pocket UCEP" Reference For Using IICEP Information Retrieval Program

IICEP Command Glossary

Cmmw Famwa DuesdptIu cbpsl Ksyw-

find <keyword> -sets current subset of contacts (use wihlst" (use with "find." "and."
equal to those associated with and "peek" commands) "or" and "except" commands)
given keyword.

and <keyword> -lints current subset to those
asso.iated with the given
keyword. agency e.g. epa

or <keyword> -augments cunrent subset with sub-agency e.g.. enfxcement
those associated with the given
keyword. region e.g.. region 6

except <keyword > -removes from current subset
those contacts associated with state e.g., texas
the given keyword.

save <filename> -saves current list in the topic e.g., land use
specified file. sub-topic e.g.. planning

restore <filename> -replaces current list with list of program e.g.. aicuz
contacts stored in specified file.

restore -replaces current list with
previous list.

list <category I > <category 2 > -displays keywords associated
with contacts in current list for
the given category or cate-
gories. (IMPORTANT: if more
than one category is to be
specified, they should be
ordered as fowas-
<narrower> <broader>

e.g.. list agency sub-agency)

peek <category> -invokes the editor on a copy of
system file which contains key-
words for given category. "q"
returns to 1ICEP.

show -displays contact number, key-
words, name, title, address
phone number, and possibly
comments for each contact in
the current list

help <term > -prints message about the
given term.

help -prints summary of commands
and references to more specific
topics.

quit -exits IICEP program.

The first command sets the current list to all the con- 3. "or"
tacts in the Department of Health, Education, and The "or" command augments the current list to
Welfare. The second command limits that list to include the contacts associated with a given key-
those concerned with radiation. The "and" comn-

word, and can be used to retrieve a specific contact.
mand can be used to retrieve a specific contact. For For example, suppose a user types
example, "find # 234" "and # 678" bring the con-
tact numbers 234 and 678 to the current list. "find us"

9

. . -- - -. - . - - --- t-t- 7; ", , -

"or alabama" Save and Restore Commands
Once the user has narrowed contacts down to

The first command sets the current list to include all those of interest, he/she may wish to save this list for
contacts having national jurisdiction. The second future reference. This can be done with the "save"
command expands this list to include contacts with command. For example, if the user types
jurisdiction only in Alabama and the Federal gov-
ernment. At this point, the user might wish to "save testfile"
further modify the list, for example, by typing

the current list is written to a file named "testfile."
"and radiation" The file name can be any character string up to 14

characters long. Lists saved in this way can be re-
The three commands create a list of all contacts as- covered later by typing
sociated with radiation in Alabama.

"restore <filename >"

4. "except" For example,

The "except" command, which modifies the "restore testfile"
current list by excluding contacts associated with the
given keyword, can be used to exclude specific con- would recover the list saved by the "save testfile"
tacts. For example, command. The "restore" command can also be used

to recover from errors made during the selection
"find radiation" process. The "restore" command used without any

filename causes the previous list of contacts to be re-
"except hew" stored as the current list. Suppose a user types

establishes a list of contacts-other than those in "find texas"
"hew"-associated with radiation. As the selection
commands narrow the current list of contacts, the "and alabama"

IICEP program reports the number of contacts in "restore"
the list. When this number is small enough, the user
may use the "show" command to see the actual con- The result of this series of commands is a current list
tact data. This command is invoked by simply typing of all contacts associated with "texas" and "ala-
"show" at the keyboard. For each contact in the list, ofal concts s lted in a s" and "al-

the contact number, keywords, name, title, address, bamae" cethes rested nll the e-store" command reestablished only the set ofphone number, and any comments are displayed on "texas" contacts without reestablishing the entire
the terminal. The contact numbers displayed by the search.
"show" command can be used as keywords with any

of the selection commands. For example, List and Peck Commands

The selection commands described earlier are use-"find alabama" ful only if the user knows which keywords to use. For
"show" example, "Bureau of Census" is a keyword, but

"Census Bureau" is not. Therefore, two additional
commands have been provided to furnish infor-
mation on keywords. The "list" command displays
all the keywords from a given category that apply to
the current list of contacts. The number of contacts
in the current list which corresponds to a given key-

"except #435" word is displayed alongside that keyword. For

example,"except # 932"
"find radiation"

might be used to eliminate contacts that are not of
interest. "list agency"

10

displays all the agencies which have contacts con- category. As an example.
cerned with radiation.

"peek sub-topic"

DOC (1)
EPA (5) invokes the editor on the file of "sub-topic" key-
ERD(3) words. Then,
HEW (1)
NRC (21) "g/waste/p"

Each of these agencies is a "keyword" associated prints a list of all keyword terms which contain the
with the subtopic "radiation." If the selection com- word "waste." Finally,
mands have been used to modify the current list
of contacts, "q

"find all" quits the editor session and returns the user to the
IICEP program.

can be used to set the current list to contain all the
contacts in the data base. Thus, Help and Quit Commands

A "help" command has been provided to help
"find all" acclimate the user to using the system. If the user

simply types
"list agency"

"6help"
produces a list of all agencies in the data base. The
"list" command can be invoked with more than one the system responds with a message that briefly
category name. If the user types summarizes the IICEP commands. For further

information, the user can type
"list sub-agency agency"

"help <term>"
the program responds with a list of subagencies and
the agencies to which they belong. In general, this and the system will respond with a message provid-
feature should be used only when the first category is ing information about the given term. For example,
a subcategory of each subsequent category. The pro-
gram will respond in any case, but the information "help list"
generated may be misleading. Suppose the user
types gives a brief message concerning the use of the list

command. Many help messages refer to other terms
"list state agency" that can be used with the help command. By follow-

ing these chains of reference with the "help" com-
In this case, the first category is not a subcategory of mand, many questions can be answered without the
the second, and when the program responds with aid of a manual. The last command that a user must

know is the "quit" command. When the user types
"alabama"

"quit"
"agency: doa"

the IICEP session is ended.
it only means that "doa" is one of the agencies
having a contact where Alabama is a keyword.

SUMMARY ANDORECOMMENDATIONS
The other command designed to provide infor-

mation on keywords is the "peek" command. This This report has documented the organization and
command invokes the operating system's editor on a command structure of a pilot IICEP computerized
copy of the IlCEP system keyword file for a given system operating in interactive mode as a subsystem

11

of ETIS. The study also identified difficulties in Hamilton, J.W., and R.D. Webster, Economic Im-
implementing IICEP. The most serious problem pact Forecast System, Version 2.0: User's Man-
with both the IICEP directory and system is the task ual, Technical Report N-69/ADA073667 (CERL,
of updating the information. The jurisdictions and July 1979).
duties of the various identified agencies are nebulous
and change constantly. Kernighan, B.W., and J.R. Mashey. "UNIX Pro-

gramming Environment," Software Practice and
Nonetheless, the IICEP program could be a valu- Environment, Vol 9, No. 1 (January 1979),

able source of information to Air Force planners. If pp 1-15.
the information were maintained in a central data
base accessible by remote terminal and capable of van Weringh, J., J. Patzer, R. Welsh. and R.
supporting interactive usage, the system could be Webster, Computer-Aided Environmental
updated constantly with minimal effort, and users Legislative Data System (CELDS) User Manual.
could access it from the central source (the inter- Technical Report N-56/ADA01126 CERL,
active system). Incorporating IICEP into ETIS September 1978).
would allow the user to access IICEP's information
without having to learn to operate a new system. Webster, R.D., L Ortiz, R. Mitchell, and W.

Hamilton, Development of the Economic Impact
It is recommended that selected potential users Forecast System (EIFS)-The Multiplier Aspects.

(the Air Force Regional Civil Engineering offices, for Technical Report N-35/ADA057936 (CERL, May
example) use excerpts from this document to 1978).
analyze the usefulness of the software produced
under this research and development effort. The Webster, R.D., et al., Development of the Environ-
suggestions resulting from such a review could form mental Technical Information System. Interim
the basis for modifying and improving the system. Report E-52/ADA009668 (CERL. April 1975).

Furthermore, an update procedure could be set up Welsh, R.L., User Manual for the Computer-Aided
as part of an effort already contemplated for the Environmental Legislative Data System, Tech-
ETIS operational component now being established nical Report E.78/ADA019018 (CERL, Novem-
for Army users. The additional update of the IICEP ber 1975).
data could be integrated into existing procedures for
CELDS and EIFS with little increase in long-term Zucker, J., K. H. Davis, and P.J. Plauger. Automated
operational costs. Software Design Tools: "Unix: A High Level

Environment for the Development of Micro-
REFERENCES processor-Based Systems." "Using Unix for

Development of Microprocessor-Based Systems."
Baran, Robert, and R.D. Webster, Interactive "Using Unix for Developing Microprocessor Soft-

Environmental Impact Computer System (EICS) ware: A Case Study," "Unix in an Office Environ-
User Manual, Technical Report N-80/ADA ment": presented at Midcon 77 Electronic Show
074890 (U.S. Army Construction Engineering and Convention, Chicago, IL, 8-10 November
Research Laboratory [CERL], September 1979). 1977, Electrical and Electronics Exhibitions, Inc.

12

APPENDIX A:

SAMPLE DATA FROM IICEP DIRECTORY

STANDARD FEDERAL REGION V

A. llnoh
1. General

ILLINOIS
General
Environmental Quality

a. Agency

Environmental Protection Agency
2200 Churchill Road
Springfield 62706

(217) 782-3397

Richard H. Briceland, Director

Funedon-The Agency coordinates programs for air quality, noise, solid waste and water quality.

State Laws--The Agency is established by S.L., Chapter III/2, Section 1004.

Federal Laws--(See functional headings.)]

ILLINOIS
General
A-95 Clearinghouse

b. Agency

Bureau of the Budget
103 State House
Springfield 62706

(217) 782-4520

Leonard Schaeffer, Director

Funtedo--The Bureau is responsible for reviewing federally financed projects in accordance with
A-95 procedures.

State Laws-None identified.

Federal Laws-The Bureau coordinates state review of federally assisted projects pursuant to OMB
Circular No. A-95.

t 13

.

..

ILLINOIS
General
Transportation

c. Agency

Department of Transportation
2300 S. Dirksen Parkway
Springfield 62706

(217) 782-5597

Langhorne Bond, Secretary

Function--The Department plans and develops state transportation systems. It develops and imple-
ments mass transit programs, plans airports, promotes transportation safety and constructs and maintains
highways.

State Laws--The Department is established by the Civil Administrative Code of 1917.

Federal Laws-4See functional headings.)

2. Air Resources

ILLINOIS
Air Resources
General

a. Agency

Division of Air Pollution Control
Environmental Protection Agency
2200 Churchill Road
Springfield 62706

(217) 782-6514

John Moore, Division Director

Function-The Division administers and enforces state air pollution laws and reviews applications
for permits.

State Laws-The Division is established under the Environmental Protection Act of 1970, as
amended. The Division operates under the following laws and regulations: Stationary Sources Standards, 1972,
as amended; Air Quality Standards, 1973; Episodes Regulations, 1976; Open Burning Regulations, 1971, as
amended; and Odors Regulations, 1972.

Funedon--The Division administers state responsibilities under the Clean Air Act.

14

ILLINOIS
Air Resources
General

b. Agency

Pollution Control Board
309 West Washington Street
Chicago 60606

(312) 793-3620

Jacob D. Dumelle, Board Chairman

Funetid--The Board establishes air quality standards and regulations.

State Laws-The Board is established under the Environmental Protection Act of 1970, as amended.
The Board operates under the following laws and regulations: General Air Pollution Regulations, 1972. as
amended; Stationary Sources Standards, 1972, as amended; Air Quality Standards, 1973; Episodes Regu-
lations, 1976; Open Burning Regulations, 1971, as amended; and Odors Regulations, 1972.

Federal Laws-The Board administers state responsibilities under the Clean Air Act.

3. Energy

ILLINOIS
Energy
General

a. Agency

Division of Energy
Department of Business and Economic Development
222 South College Avenue
Springfield 62702

(217) 782-5784

Sidney M. Marder, Director

Function-The Division conducts energy conservation programs and coordinates energy research
within the state. The Division administers fuel allocation programs.

State Laws-The Division is organized under 78-1125. S.L. 1974.

Federal Laws--The Division administers energy conservation plans under the Federal Energy
Administration Act of 1974.

15
. IS i_

-

ILLINOIS
Energy
General

b. Agmc

Interstate Oil Compact Commission

(See Interstate Agency Appendix for details.)

16

APPENDIX B: Then the "hash" program is invoked by

SOFTWARE DESCRIPTIONS "hash <file list>"

Hashing Subsystem where "<file list >" is the name of the file discussed
above. The keyword files in the <file list> file are

The hashing subsystem provides a means of look- opened and read in order; each is scanned for key-
ing up character strings in files of keywords. If a words, and identifying data on each keyword are
string is present in these titles, the lookup mecha- written to a temporary file. This temporary file is an
nism returns identifying data, specifying: array of struct elements defined as follows:

1. The number of keyword file in which the string struct marker /* word marker structure layout */
is found

int file; /* keyword file number
2. The keyword's number within each file

int idnum; /* rel word # within file
3. The byte offset of the keyword within each file.

long beginbyte; /* byte offset of work in file */
The keyword files are specially formatted text

files which are named with some fixed prefix such as int hashv[3]; /* hash value *1
"key," followed by a numeric string. Generally, it is
best to organize keywords into coherent groups ac- Next, the "hash" program calls a subroutine
cording to file numbers associated with each key- named "maketable," which rearranges the contents
word type. For example, in the IICEP system, one of the temporary file into a hashtable. The "hash-
category consists of state names, while another table" file is also an array of struct elements defined
consists of agency names, so these categories should as above; it is about half-empty at this point in the
have different file numbers. In the files themselves, "hash" program, with the empty slots marked by
keywords are marked by a "#" character in column setting the "file" field equal to - 1. Slots occupied
1. followed by the keyword string, followed by a by struct elements corresponding to keywords from
terminating ":" char Acter. Characters following the the keyword files are positioned as follows:
":" character and characters on subsequent lines
are not part of the keyword string. This provides I. The total number of slots in the "hashtable"
space for comments about the keyword. The next file minus a maximum overflow allowance defines
"#" character found in column I marks the end of a modulus.
the comments and the beginning of a new keywou(.

2. The hash value included in a word marker
Thus, the "hash" program sets up a hashtable struct is used to define a long integer.

which allows keyword data to be retrieved, but in
order to use the "hash" program, another file must 3. The remainder of the long integer divided by
be prepared which itself names the keyword files. the modulus yields a trial position in the hashtable.
This file simply lists one keyword file name per line;
the following is a current list of IICEP keyword files. 4. The marker struct element is inserted into the

first empty slot following the trial position.
key.0 key.5

The reader should consult the "maketable" sub-
key.I key.6 routine source code (Appendix C) to see the actual

mechanics of the temporary file of word markers
key.2 key.7 reorganization into the "hashtable" file.

key.3 Once the "hashtable" file has been created, the
"lookup" subroutine can be called from a "C" pro-

key.4 gram to retrieve identifying data on any character
string. The "lookup" routine computes a trial

17

position in the hashtable just as in steps 1, 2, and 3 on one or more contacts, and each contact has the
above. Then the hashtable is searched until the first format given below:
empty slot is encountered. The marker struct ele-
ments matching the given keyword are passed back # <contact number>
to the calling procedure.

<category number>: <keyword string>
Setup Subsystem

<category number>: <keyword string>
The "setup" program scans files of IICEP data on

contacts to prepare for retrieval of this data by the
IICEP information retrieval program. The "setup"
program is invoked by typing

"setup < file list >"

The argument "<file list>" is a file which names
the IICEP files containing contact data. These
names should be listed in the "<file list>" file, <category number> : <keyword string>
one per line: for example,

&

pc.O
<text data, including name, title, address, phone,

pc.62 comments >

pc. 125 In the format description above, the <contact
number> field is a numeric string giving the

pc.181 number of the particular contact. Contacts are
numbered beginning with zero and must be ar-

pc.241 ranged in increasing order. Gaps are permissible.
but tend to slow down the retrieval of data.

pc.309
In the next section, each line gives a keyword

pc.377 string and the category (e.g., "agency," "region") to
which it belongs. Presumably, the given string will

pc.444 be found in the keyword file numbered with the
given category number. For example, the string for

pc.518 category two will be found in the keyword file for
category two.

pc.595
The latter section must be terminated by a line

pc.678 consisting of a single "&" character.

pc.764 Succeeding lines contain text data about the con-
tact; the next line containing a "#" character in

pc.841 the first column marks the beginning of a new
contact.

pc.937
The following is an example of data for a specific

The files of contact data are named "pc.x," where contact:
"x" stands for the contact number of the first con-
tact in the file. It is important that the files listed in # 61
"pclist" be ordered so that contacts are encountered
in strictly increasing order. Each file contains data 0: doc

18

1: office of the secretary location consists of

4: socioeconomics 1. The number of the "pc" file in which the con-
tact occurs

5: economic development
2. The byte offset of the beginning of the contact

3: us
3. The byte offset of the text data for the contact.

&
If there is a gap in the numbering of the contacts.

Jerry Jasinowski, Assistant Secretary for Policy the missing entries in the index are marked with a
(8-77) - 1 in each of the above three fields.

14th Street, N.W. The Retrieval Program

Washington, DC 20203 When the "hash" and "setup" programs have
been successfully run, the retrieval program "ficep"

(202) 377-2113 can be used. A complete description of the retrieval
commands can be found in Chapter 4. The following

The "setup" program opens and reads the data discussion focuses both on the files required by the
files in the order they are listed in the "pclist" file. "iicep" program and on their functions. Five
As "setup" scans the data, messages are printed, if families of data files are used by the "iicep" pro-

gram:
1. The numbering of the contacts is not con-

secutive. 1. The "key." files containing keywords and
comments

2. A keyword is not present in the alleged
keyword file. 2. The "hashtable" of pointers to the "key." files

3. The "&" line ending the keyword section is 3. The "pc." files of textual contact data
missing.

4. The "pcndx" file indexing the "pc." files
Under any of these conditions, the line number in

the file is printed along with an appropriate mes- 5. The "pckey" files of keyword id numbers.
sage.

When the "iicep" program in invoked, a sub-
As the "setup" program scans the data files, the routine named "initlist" is called to construct a

keyword data are digested and written to special list of all the contacts in the data base. This is done
files that will later be employed by the retrieval by reading the "pcndx" file and noting those entries
program. For each keyword category, a file named not marked as being empty. Thus, gaps in the
"pckey.X" is created. The "X" stands for the sequence of contacts are detected and left out of the

number of the corresponding keyword file. Each list of contact numbers. The list of contact numbers
file lists the id numbers of the keywords pertaining is represented as an array of integer entries and
to the contacts in the data files. A "pckey" file can written to a disk file. An entry of - I marks the end
be thought of as an array of integers. If the keyword of the list.
id numbers for a given contact have no keywords
from a given category, or if there is a gap in the The selection commands "find," "and," "or," and
contact numbers, then the - I entry is still present "except" modify this list. Each of these commands
to signify an empty list of keywords. takes a keyword as an argument. The hashing

lookup mechanism converts the keyword string into

The "setup" program also creates an index file as data specifying the appropriate keyword category
it scans the contact data. Each entry in the index file and id number within that category. Next, the

contains the location of a given contact. This appropriate "pckey." file is scanned by the "keypcs"

19 j

-------------,..

routine to list those contact numbers in which the opened and read in order to retrieve the actual key-

given keyword appears. Finally, the "bool" sub. word strings so that they can be printed to the user's
routine is called to perform the appropriate logical terminal.
operation on this list of contact numbers and the
previous list of contact numbers. The "show" command runs through the current

list of contact numbers and displays the data for
The "list" command scans the current list of each contact. This is done by finding the location of

contact numbers and the appropriate "pckey." file the contact data in the "pcndx" file and then read-
to determine which keyword id numbers from a ing the data from the appropriate "pc. " file.
given category are associated with the contacts in
the current list The result is a list of keyword id The "help" command uses the hashing lookup
numbers and the number of contacts in which they mechanism to convert a character string into data
appeared. Also listed is the number of a specific specifying the category number and byte offset of
contact and the location within that contact where the string within the given keyword file. The keyword
the keyword appeared. When this list is completed, file is then read, and any comments following the
the "pcndx" file is used to locate the contacts where keyword string in that file are displayed on the
the keywords are listed. The "pc." files are then terminal.

2D

APPENDIX C:

SOURCE CODE

JuL 6 14:09 1979 commandefs.i Paqe

1 I* this file is inctuded by both iiceti.c and setect.c *1
Z /* it defines command numbers for switch statements *1
3
4 #define PIND 0
5 #define 4tJD 1
6 odefine eR 2
I #define EXCEPT 3

#define SAVE 4
9 fdefine RESTORE 5

1I Odefine sHOW 6
11 define QUIT 7

o fde fiIle ?EEK 8
13 define HELP 9
14 9define LI, T 1C

2

l i I I I

jut 6 14:U9 1979 keynamaes.i Pale 1

1 char *keynamesE]
2
3 "agency",
4 "sub-ajency,.
5 "region",
6 .. state"
I "top i C".
43 .. ub-tot icO
9 .jrograml",

ic 0"
11)

22

Jul 6 14:30 1979 params.i Page I

1 #define KEYNAME "/usr/tmp/iicep/data/key."
2 #define HASHTBL "/usr/tmpiicep/referente/hashtat~e"
3 Ndefine FCKEY '/usr/trop/iicei)/reference/pCkey."
4 #de fine PCNDX "/ujsr/trnp/iicep/reference/pcncx"
5 #define PC I/usr/tmc/iicep/dita/ c."

7 Ncie f ine hUMTYI'S 7

9 #define MESSAGES 7

11 #def ine ALL ..att"

23

Jul 6 14:09 1979 strictdefs.i Page 1

1
2 Udefine bUFRSIZ 256
3
4 struct keybufr
5 (
6 int descrip; /* file descriptor
1 int *riext; /* next empty slot in buff
8 int oend~ufr; /* marks end of buf */
9 int bufr[bUrRSZl]; I* buffer for keyword io umters rI

1 1;
11
12
15 struct marker I* word marker structure Layout *1
14 (
15 int file; /* keyword file number 5?

16 int icnum; /* reL word 4 within file
17 long tUeoinoyte; I* byte offset of wore in file *1
1 int hashvE3J; /* hash value */
19);
2C
21
22 struct qetthuf /* fur buffered itiput by Line *1
23 {
24 int fildes; /* fiLe oescriptor of the given file '1
15 irit nteft; /* numOer of chars left in buffer .1
26 char -nextp; /* pointer to next char in buffer *1
27 char buffE512J; /* for-buffered reads 5/

26)
29
31
31
32
3S Mdefine WDXSIZ 256
34
35 struct ndx
36 (
37 int fiLer.um; /* number of file where entry occurs *1
39 tun-, keyLines; /* byte offset of keytine section *i
39 Long datatlnes; /* byte offset of data section *1
40);
41
*2
43 struct ndxbufr
44 (
45 int fidndx; /* descriptor of ndx file '/

46 struct ndx *nextndx; /* next open slot in buffer ./
47 struct nun *endndx; /* marks end of buffer ./
48 struct ndx bufndx[NbMxSIZ; I' buffer for index entries .1
49);
Su

51
52 struct keycheck

.4 53 (
54 imt keycount; /* number of occurences 'I
55 int pcnue; /* io of pc where found
56 int keynum; /* number of key in cc keylines 'I

24

* I. C .g.. . ** *. C . It U * ,

Jut 6 14:09 1979 structdets.i Page 2

51 3;
5P
5 9

66 struct keymarker
61 f
62 int keytype; /* category of the keyword

63 cnar *keystring; /* points to the keywcrc string '/

64 3;
65

66
61 #define MAXKEYS SC I* max keys oer single pc */

(#Jefine MAXCUIARS 1C24 I rax chars in itt keys per Cc *1

69
7 struct keydata
71 (
72 int tctkeys; / nimJber at keys in a pc

73 struct keymarker keyptr[4AXKEYS]; / point to *L1 keys for a pc */

74 char keytuf[MAXCHARS]; /* hotds keystrings fcr a pc "/

75

25

Jil 6 15:17 1979 iicep.c Page 1

1 N

3
4 NAME:
S
6 iicep (ain program
7
8 FUNCTION:

10 lipLenent the commands of the IICEP system.
11
12 ALiORITHM:
13
14 The program begins by performing certain system initialization tasks.
15 In p.rticular. "iaro" is called to select a unique namc tor the
16 process, and scratch fiLes are created. The scratch files are usej
17 for Listing the current arid &revious Lists of contacts ano they are
1 yinitialized to List all the contacts in the data base.

2. when the above operations are concLuded, the prolram enters the
21 mjin com nand Loop where the user is prompted to enter a command and
22 controL is transfered to the sub-routine appropriate to executing
23 that command.
24
?5 CALLS:
26
2? iam()

28 cor cat()
29 in it ist()
30 rFsp()
31 ccpy()
32 execute()
33 table()
34 select()
35 sove()
36 restore()
37 show ()
38 ptek()
39 heLp()
4. keyword()
41 List()
42
43 Also, Unix routines:
44
45 printf()

4o exit()
47 sinaL()
48 creat()
49 pierror()

S open()
51 setexit()
52 un(ink()
53
54 H ISTORT:
55
56 written by Can Putnam - spring 1979.

26

. *9* e a . * * . " *..e.o "o .*. .. •S .. •. e• ~ l

Jul 6 15:17 1979 iice p .c Paqe 2

57

59
6'
61 #include "structdefs.i" #* defines getLtuf
62 finclude "commandefs.i" /* defines commands 'I
6.3 dinctude "keynames.i"
64 #include "params.i" /* needea for KEYNAME onLy!! -Dan Putnam hi
65

66 char *commtbt] /* command names, must be consistent with comeandefs.i A/
67 {
68 f ind",
69 nd"

7U cr",
71 "except",
72 " tve"a

75 .restore",
74 "show",
75 "qui t"
76 "peek",
77 "heLp".
78 "List",
79 0,

81
e2 struct qetLtuf butin; /* for Line criented input
93 char Linet256J; I* used with butin 'l

Sint count; /* character count returned frog get('1

8(int fidscratcn[2j; /* tile oescriptors .l
87 int phase C; /* used to alternate between files *1
88
69 char -keyprefix KEYNAME; /* name of the keyword files '/

91

93 miin(aroc,argv)
94 int argc;
45 char **arov;
96 6
91 int r-seto; I* used with setexit to handle treaks 0/
9F char buffer[2563; /k buffer for user response 'I
99 char comm[256]; /* buffer for command string ./

IC char *src; I. utility pointer used with copy()
IC1 char *dst; /* utility pointer used with copy()
102 char me[1C; /* tuffer for my unique name *l
1.3 char scratch[2]f15J; /* names of scratch files .l
1C4 int opcode; I* command number '1
1^5 int quitfiag; 1* loop control: main command loop '1
1C6 int num; /* numoer of pcs returned frog inittist */
1r? struct marker *keyword(); /* returns pointer to keyxord data
1 C al
1C9
11C signal(2P 1); * jqnore interrupts
111
112

27

- * ~ * ** .- *

JuLk 6 15:17 1979 llcep.c Page 3

113 printIV"wetcove to the LICEP intermation retrieval prcgraw~r");
114 printf(CFor hev. type 'hetu iicep commands'~n").
115
116
117 /** create scratch files
11?4 w*** e will need to read and write on themu, so close and reopen *

119
120
121 if(iam(me) < 0)
12? (
123 printt("can't create unique name,- aborting~n");
124 exito;
125
126
12? concat~me, "Oscratch", scratchtC)
1V~ concat(meo "Iscratch", scratc-ht]);
129
1 5")
131 fidscratch[03 = creat(scratch:UJ. 0666);
132 fidscratch(1) creat(scratch(1J, 0666);
133
134
135 if(fidscratch(CJ < Uj 11 fidScratch~l] < C
136 {
13? perror("pamsp creat");

139
140
141 close(fidscratch[0])
142 close(fia5Crat~h(1])
145
144 fidscratch[03 op~en(scratchE0J. 2);
145 fidscratcht1J = open(scraitch(1J' 2);
1 46
147 if(fidscratchC-AJ u 11 tlascratch(1] < C
14~? (
149 nerrorC"pamsp open");
15~1 ex itO
151
152
153
154 initialize scratch files to List aLL pcs '
155
156 num =inittist(tldscratchEO]
157
156 printf("%d contacts in current tist~n", num);
159 copyfite(tidscratchLO], lidscratch~l]
160
161
162
143 I*~ this is the main commeandi Loop h

164
165 for(quitftag = 0; quitftog 0;)
166 (
167 setexit()
168 signat(2o reset);

28

Jul 6 15:17 1979 iicep.c Page 4

169 printf("\n~nWhat next?\n");

171 resp(buffer) /* get user response '/
172
17! src = buffer;
174 dst = buffer;
175 copy(&src, 9dst, O sizeof(buffer)) /* omit extra blanks *1
17o
177
17b /****A* see if user wants to execute a Unix comand *1
179
18J i(*tuffer == '')
1. 1 (

12 execute(buffer + 1 ;

13 continue; /* go back to top of command Loop *1

164
185
186
187
186 I****** ccpy characters into command string
1P9

190
191 src = buffer;
192 dst = comm;
193 c(jpy(!src, &dst, ' , sizeof(com))
194
195
196 if((upcode = table(come, commtbt)) = -1
191 (
19d printf("'ts not a command\n", comn.);
199 continue;

201
2/2 I****** copy() has Left src pointing at command argument strin .1
2C3
2.34 switch(opcode
2C5 (

6/***** these compands select the current pc List a,
20
2cp case FIND:
SC , case AND:
21" case OR:
211 case EXCEPT:

212
213 si-inat(2P 1); I* inore interrupts here *1

214
215 select(opcode, src);
216 t reak;
217
218
219 case SAVE:
2M1 sirnbt(2, 1); * icnore interrupts here of

221 save(src 3;

222 break;
223
224

S 29

0 d *..
. . .

• *4D ** *e ,.0 'Iw.e * * w. • ne.

Jul 6 15:17 1979 iicep.c Page 5

225 case RESTORE:
226 signal(2, 1); /* ignore interrupts here '1
22? restore(src);
Z2 break;
229
230
Z31 case SHOW:
232
233 I***** don't jinore interrupts here */
234 show(fidscratcht phase J, src);
235 oreak;
236
237
23R c.se QUIT:
?39 quitfka'v = 1; * tnis will jet us out ot Locp 'I
241 treak;
?41
242
243 case PEEK:
244 .eekC src);
245 Creak;
246
247
248 case HELP:
249 help(O, keyword(src)) /* L standard outcut '1
250 break;
251
252
253 case LIST:
254 list(fidscratch[phase], src);
255 break;
256
25?
25E default:
259 printf("'9s is not yet impkemented~n", buffer);
26J treak;
261)
262
Z63
264
265 unlink(me)
266 unlink(scratch[l])
26? unltin(scratchI]);
268

30

JuL 6 14:04 1979 eatdata.c Page 1

1 N

3
4 NAME:
5
6 ettdata()
7
-i FUNCTION:
9

lo Read the keyword Lines for a contact into a "keydata" struct
11 su th)t they can be more easily referenced.
12
13 CALLING SFOLIEtNCE:
14
15 int pcid
16 int Ii ,d,c
1/ long offset
1. struct keyJta *Dcdata

19
2) PARAMETERS:
21
22 pcid Accession number of the point of contact whose
23ata is beinl read.

24
15 fidpc FiLe descriptor of the contact data file where the
26 data for the given pc resides.
27
2A offset B3yte offset of the data in the given file.
2Q
3t pcdata Points to the structure which gets the key cata
31 to be read from the file.
32
33 RETIIRI.S
34
35 nothinJ.
36
37 ALGORITVI4M

3') Tne roJtire seeks into the file and reads the heoder.
4.j Ii these operations are successful* the routine enters
41 a lIoL- ant reads the keyword Lines into the "keydata"

41? struct indicated ty "pcoata".
45
44 CALLS:
45
46 s(ekt()
47 qetL ()
4d copy()
49
so ALso, Unix routines:
51
52 printt()
53
54
55 CALLED bY:
56

31

• e" c • 4 Q tO ** 4 * , . 1 . , * * Q .o* *

Jut 6 14:04 1979 eatdata.c Page 2

)7 sr,ow()

List()
59
60 o:ISTORY:
61
62 written ty Dan Putnam - spring 1979.
63

65
66
6?
CA Vinctude "structdefs.i" /* define gettbuf struct 4/

69
7
71
72 etdata(rcid, fidpc, offset, pcdato)
73 int pcid; /* numoer of source permit
74 int fiupC; /* file descriptor of rc data file 4/

75 Long offset; /* byte offset of data for oiven pc 4/

7o struct keydata *Ijcdata; /* gets lines of keyjord data */
77 f
78 int keynumber; /* counts number of keys in pc 4/

79 struct keymarker *markptr;. /* points thru keyptrs of pcdata 4/

80 char *bufptr; /* points thru keybuf of pcdata 4/

b1 char *endptr; /* points off end of keynuf 4/

8 2 char *src; 1* utiLity pointer used aith copyC) 41

b3 char kdst; /* utility pointer used with copy() 4/

84 char *end; It marks end of pcdata buffer 4/

85 char tag[ItOI; /* tar grabbing tag off of a tine *1
86 char LineE256]; /* gets tine tines from ietl() 4/

87 int nLytes; /* returned from gett 4/

v struct getlbuf bufr; I* used by getO)
89
9)
91
92 bufr.fitdes fidpc;
91 buir.riteft 0;
94
95 if(offset < 0 II seekt(fiopco offset) < C)
96 (
9? printf("can't seek to data on pc %d~n". pcid);
91 return;
99)

'CO
1021 t; 1
1 ti 2

1C3 if((nbytes getL(Line, &bufr)) <=)
104 (
105 printl("can't find data on pc Zd~n", pcid);
106 return;
10?)

108
1C9
I ill
111 keynutber a 0;
112 bufptr x scdata -> keybuf;

32J

JuL 6 14:01. 1919 eatdata.c Page 3

113 mirkp.tr = coata -> keyl~tr;
114 while((noytes = get((Line, &bufr)) > C
115 (
116 lineC nbytes I 1J 0; 10 reptace *tn' by nulL 4
117
1 19

12C b re a k /* marks eno of keywords
tl
122 src =tine;
123 dst = taq;
124 coy(&src, %dst, ':', sizeof(tai))
125
126 i f(keynamber > MAXKETS)
127
128 printt("M1AXKEY ti'mit exceedec~n");
12 ? br-?ak;
13.1
1 s1
132 m:'rkptr ->keystring = Lufptr;
133 m~rkptr ->keytype =atoiC tag)
134
135
136
137 if(copyUgsrco Fbtn.fptrp 0, F(p~cauta -)keybut[MAXCHARS2) - ufptr) CC)

13e'
139 printf("MAXCHARS Lim'it exceeded~n");
140 ureak
141)
142
143 keynumber++*
144 mirkptr*#;
145)
146
141 pcdata - totkeys keynurnber;
14

33

Jut 6 14:U4 1979 getndx.c Page 1

1 #

3
4 NAME:
5
6 qetndx()
7
'i FUNCTION:
9

10 Find the location of the data for a 4iven contact, ano
11 return a file descriptor for the data file.
12
13 CALLINJG SEQUENCE:
14
15 int pcid
16 struct ndx *pc_ptr
17 int getndx()
18
17 PARAXETERS:
2 0
21 pcid The accession number of the contact of interest.
22
23 pc ptr Points to the index struct to be fitled in %ith the
24 ddta giving the Location of the given contact.
25
26 RETURNS:
27
28 P-turns a file descristor of the contact data file cortaining
29 the given contact.
3.
31 ALzORITH':
3,
33 This routine may be interrupted if the user hits the "rub-out"
34 kt'y. It this hdppens, the index fits wcn't qet closec. To •
35 handLe this probLem, the descriptor is stored in a stitic variable.
36 The routine begins by exaniring this variable to see if it is
37 non-zero. If so, the file is closed and the descriptor is set tc
38 zero to mark the fiLe as tein: cLoseu.
39
40 The routine next ol ens the index file to read the index struct
41 giving the Location data for the given contact. Then, the
42 data fiLe containing the 9ven contact is opened ane the
43 fiLe descriptor is returned.
44
45 CALLS:
46

47 Various Unix routines.
48
49 ctose()
50 seek()
51 read()
52 perror()
53
54 CALLEDO Y:

55
56 show()

34

4 .* 0e. *.* • .. '

Jut 6 14:04 1979 getndx.c Page 2

57 list(1

59 HISTO 4:
60
1 Auoapted trom the "getndxo" routine of the PAVS system - spring 1919.

6L :

64

t,1 #include "structdefs.i" /* Jefines pc index structure *1
67 Miinclude p arams.i" /* defines PCNDX i1

(o E

6,)etnJx(pcid, pc tr)

7i int i;ciJ; /* number of gic that ibe want */

71 struct ndx *pc_ptr; /* index to 'c that we 6ant

?f char c.cfitLe(]; / name of pc file
?4 int file; /* pc file number where pc is I/

75 Long offset; /* byte offset into a file A/

m5 int fidpc; /* descriptor of pc file It
7? static int fidndx; /* oescriptor for pc incex lile I/

79
80
81 /AA**** mike sure we close olc files before usinq *

b3 if(fidnd != :))
F4 (
85 close(fidndx)

fidndx = a* und mark it as closed '/
87

9-
91
92 if((fidnds = o en(nC ND X 0)) < 0)

93
94 perrar(" etndx can't open ,cndx file");
5 r turrn(-1);

97
'0 o 'sfset c id

99 o'fset sizeof(*Ifc_;tr);
1C3 iMt seekt(tiondx, offset) < C)

1C1
IC2 perror("getridx cdn't seek into ;.c index");
1C3 rturr,(-1);
104)
1

1.15 if(re.id(fidndx, pc ptr, sizeof(*pc.;tr)) < sizeof(*pc.ptr)

1Ce printf("cn't read pc inaex fiLe~n");

11;9 return(-1);

111 close(fidndx);
112 fidndx C; /* mark it as closed

35

C. • 0 "I ee .. * 4. •. * *.. * * * * 0J S o * * o

Jut 6 14:04 1979 getndx.c Page 3

113
114 fiLe pc.ptr -> fitenum; /* this is pc fite number

115 concat(PC, tocv(0, fire), pcfite);
116
117
11h if((fidpc = open(pcfiteo 0)) < U)
119 I

120 perror("getndx can't open pc tiLe");
121)
122
123
124 r.turn(fidpc)
125

36

VI

JuL 6 14:04 1979 injtList.t Page I

1 #

3
N AME:

5

6 initlist)
7

FUNCTION:
9

1., Initiitize a fiLe to List aLt the contacts in the data Lase.
11
12 CALLING SEQUEiNCE:
13
14 int f iipc
15 int initList()

1t
17 PARAMETERS:

19 fidpc file descriptor of the cutput List of pc accessirn
2C numbers.
21
22 RETURNS:
23
24 Returns the number of accession numbers in the output List.
25
26 ALGURITHM:
27
2F The rcJtine opens the index file and reads from it in a Loop.
29 Empty iniex structs are marked Ly havingc their "fitenum" fielos
3i. st to -1. whenever a struct is encountered that is rot empty.
51 the corresponding accession number is irserted into the output
32 buffer.
33
34 CALLS:
35
3,1 Unix routines:
3?
3.. s'ek()
39 open()
4C perror() I
41 e x i t()"
4? read(

43 w rite()
44 cLose()
'5
46 CALLED bY:
47
48 iicep (main program)
49 sLect(o
5.1
51 HISTORY:
52
53 written by Dan Putnam - slrinj 1979.
54

56

37

Jul 6 14:04 1979 inlttist.c Page

57
5i, #inctude "'structdets.i"
59 Ninctude ..params.i"
6 C
61 #defin~e PCSJZ 256
61 #define %4OXS1Z 256
63
64 inittist(fidpc)
65 mnt fidpc; /* descriptor of output list of pc ids ~
66 {
07 int pctuf(PCSlZJ; I~output buffer for List of PC ids
68 int *Vcptr; /a points thru pcIuf 2

69 int fiindx; /* descriptor of inp.ut inoex file &I
struct ndx ndxbufLNDXSIZJ; /* inp.ut buffer fcr index file '

71 struct ndzx *ndrptr; /* points thru ndxbuf
7? register jnt n; /* fast Loop counter *
73 irnt pcid; /* id of current pc in inlex list '
74 mnt Countjc; I* counts number of pc *s in irdex A/
75
76
77 seek(fidpco U. 0); /* be sure to start at beqinning -A/
78s
79 Mf (fidndx = open(PCNb'(. C)) < 0)
80 {
3 1 psrror("inittist can't open pcndx");
82 exit)
83
84
k,5 Pcid =1; I' p'c ids beejin with zero '
b6 countL.c = . /* no pc's sc far
R-1 pcptr = pcbuf;

y whitie((n =reau(fidndx, ndxbuf, sizeot(ndxbuf >)))

91 n =/ sizeof(*ndxbuf /* nl z of ndx entries
92

94

C, 5 do

91 i f ndxrtr*- filenum !Z -1)

99 ~ ~ got one! *

101 C,)untpcC*;
102 *pcptr+* pcid;
1C3
1C4 if pcptr >= 'kpcbLf(PCSIZ2I 105 6 Mf irite(fidjc, Scbuf, siieof(pcbuf)) < siaeof(.pcbut)

108 pierror("inittist can't write pc id's");
109 e Xi to

112 pcptr 2pCouf -

38

Jut 6 14:0s4 1979 inittist.c Page 3

113)
114
115)
116
117 pcid++; /* bump pcid to ij of next incex entry *1
11b)

119 white(-- n) I* count dowr or .unter of entries *1
12J)

121
122
123
124 ?****** fLush remairling pc id's in rcbuf */
125
126 *pcptr++ = -1; /* nuLL terrinate List
127
124 r, = (pcptr - pcbuf) * 2;
129
13C if(write(fidpc, pcbufo n) < n)
131 {
132 perror("inittist can't fLush pc List");
133 exit
134 1

1 35136 ctose(fidndx)

13?
13F return(countpc)
139

39

Jut 6 14:04 1979 keypcs.c Page 1

1 a

3
4 NAME:
5

6 keypcs()

e FUNCTION:

17 Make a List of the contacts associated with a given keyword.
11
12 CALLING SEQUENCE:

13
14 int type
15 int fidin
16 int fidout
1? int keypcs()
18
19 PARAMETERS:
20
21 type Id number of the given keyword.
22
23 fidin FiLe descriptor of the "pckey." file for the category
24 of the given keyword.
25
26 fidout FiLe descriptor for the output file which will list
27 the accession numbers of the contdcts associated
28 with the given keyword.

3., R[TUR.S
31
3' Pturns the number of contacts associated with the given keyword.
33
34 ALGORIT11M:

35
36 The routine reads throujh the "pckey." file given by the "fidin"
37 file descriptor. Eactk -1 entry in the file bumps the crrent
38 pc nurber by one in order to keep track of which pc accesslcn
39 number is current. Wten an entry matches the "type" ar-ument,
4r the current pc accession nuwber is inserted into the cutput
41 buffer. The "previous" variable keers track of the Last accession
46e number to be put into the output List, and the routine checks to

43 be sure that no accession number is inserted twice. This step
44 is neccessary in case a keyword has been entered twice in the sare

45 contact in the data base.
46
47 CALLS:
48
49 Unix routines:

51 seek()
52 read()
53 write()
54
55 CALLEO BY:
56

40

JuL 6 14:04 1979 keypcs.c Page 2

57 setect()

59 HISTORY:
60
61 written ny Dan Putnam - srrinq 1M79.
62
63
64
65
66 #define INSIZ 1C24 /* size of inrut Luffpr */
67
68 #define OUTSIZ 256 I* size of out buffer '/

69
7'; kvy!,c s (t y .e t i Ii n f idout)

71 int type; I* Locate pc's with this key 'I
12 int fidin; /* descriptor fcr pc key file */
73 int fidnut; /.* descriptor for qualified pc file ./

74
75
76 int count; /* counts nurrter of qualified pc's
77 imt inbuf(INSZ]Z; /* input)uiter for pc key file
7 int outbuf[OUTSlZ]; /* output buffer for quaLifiec pc's
7? int *outptr; I* points to next open slot ir cutbuf *1

o0 int pcid; I* current pc io number */
b1 int previuus; /* id number of last pc put in cutbtf *1
82 register imt n; /* tor tooo counting thru pc key list '1

83 register int *idptr; I* grabs id numbers out of list *1
84 register int idkey; /* equals id 9 of current key in list *1
es
is6
87 count = 0;

8 pcid = 0;
89 previous = -1;
9? outptr = outouf;

91
92 seek(fidin, o, C); /* start at beginniry *
93 s.ek(fiduut, Do 0); I start at teoinnint. *
94
95 while((n = read(fidin, inbdf, INSIZ * 2)) >)
9:, (
97 n =/ e; /* n = 0 of entries in buffer *1
9

99 idptr = inbuf;
1CU

Il1 do
1(.2 (

I C if((idkey = *idptr+*) -1)
1C4 pcid*+;
1 C5
106 else
1C7

IC8 if(idkey =z tyrc . pcid > previous
1(J9 (

110 I****** 'ot one! .1
111

112 count4+;

41

Jut 6 14 :04 19 79 keypcs.c Page 3

113 previous =pcid; /* to avoid rerpet ion '
114 *outptr** scid;
115
116 it~outptr >= goutbut[oulSII)
117C
116 write(fidoutooutbuf,(Outptr -outbuf) *2);

119 outptr zoutbuf;
120J

121 ii~e -

125)
126 /*' term'inate List and write Out h
127
128 *Dutptr++
124
13-2 ,rite(fidoutpoutbufo(outptr -outbuf) 2);
131 return(count);
132)

42

Jut 6 14:04 1979 List.c Paje 1

1 N

3
4 NAME:
5

6 List()
7

FUNCTION:
9

IC Imptecent the "List" commana ot JICEF.
11

12 CALLING SEgUENCE:

13
14 int fidpctist

15 char *ar1
16
1? PARAMETERS:

19 fidspList FiLe descriptor of the current list of contact

I accession numbers.
21
22 arg Points to string containing keyword cate4ory names

23 that ere to be Listed.
24
25 RETURNS:
2O
27 nothing.
26

2Q ALGORITHM:
3'.

31 The List command can be interrupted by the user by hittini the

32 "rubout" key. This operation can Leave oiened files. To deal
33 with this probLem, file descriptors are stored in static variabLes.
34 The routine tegins by exanining these variables to see if they are

35 non-zero. If su, the fiLes are closed and tne descriptors are

36 s-t to zero to mark the files as being cLoseo.

3,
3") The next operation that is performed is to parse the cruument

3? strin4 iiven by "arg". The strinr is broken down into suh-strin,s

4 d limited by blanks. The "keynares" array is searchec to see
41 if these suh-strings are inde'?d vaLid keybord category rames.

42 if so, the index in the array which matches a sub-string is savec

43 to identify the cateqory.
44
45 The first c3tegory named in the argument string drives the operatior

46 of the List command.
47
48 The routine Loops to pick u; the keys from the first argurent

49 c.tegcry that occur in the current List of contacts.

50 This is ;ccor;plisheU through the caLL to "Listchecko)" khich

51 drives the Loop. This sub-routine fills out the "checklist" .-rray

52 which keeps track of:
53

54 1. The number of contacts in the current List which contain

55 a given eyword..

56

43

Jul 6 14:04 1979 tlst.c Page 2

57 2. The accession number of one of the contacts that-
54 contains a given keyword.
59
60 3. The number of keywords from the given category which recede
61 the keyword in the contact narec by item 2 atove.
6?
63 Items 2 and 3 provide a way of recovering a keyword ir order to
64 print it. Number 2 gives a contact where it occurs and nimber
65 3 indicates which of the keys it is. Since the "tistchecko" array
66 has Litmited tenith, it covers just a sub-r.nue of thE cossibLe
67 k-yword id numbers on each Loop iteration. On each calt "tistchecko"
6E returns the smatest id number of a keyword occuring in the current
69 List Gf contacts which has not yet been considereo in the
7 '*checkList" array. This provides a tower bound for the next iteration.
71
72 Once the *Checktist array has been fitted out for an iterationo
73 the routine prints out the keyword data for'the checked keys. If the
74 *checkList" struct for a key as not oeen checked, then nothing is
75 printed. Otherwise, the contact data is read and the given
76 kpyword string is printed as it appears in the contact cata file.
77 If any other categories were named in the argument List, ther the
78 keywords from those categories which occur in the contact data
79 are also printed.
80
el CALLS:
82
83 copy()
84 tibte()
85 concat()
96 r.sp()
7 tistcheck()

88 g.:tndm()
89 eitdata()
9-)
Q1 Also, Unix routines:
92
93 ctose()
94 printf()
95 locv()
96 open()
97 ptrror()
9il
99 CALLED 1Y:

1Co
1.1 show()
'1 G2

1C3 hISTORY:
1C4
105 written ty Dan Putn3m - spring 1979.
1G6
107
1C8
109

111 Mlnctude "structdets.i"
112 Nlnctude "params.i"

44

Jut 6 14:04 1979 tist.c Page 3

115

114 #define CIIECKSIZ 256
115
116
11?
1 1
1 19
12 C lis t(fidn,.Aistp arg)

121 int filpctist; 7* file descriptor of current Cc List '1
1 2 char jrq); /* contairs arguments of List commano *
123 {
124 struct keycheck checkList[CHlCKSIZ]; 7* marks founc keys '7
1?5 struct keycheck *checkptr; 7* points thru checklist '7
126

12? int type; /* number of chosen category *7
12^ int argtype; /7 type cf other arguments '7
12) int keynan.ber; /* number of key among keys of a pc hi

13 int i; /* counts keys ct a given type '7
131 int occurs; 7* number of current pc's with this key *7
13? extern char *keynamestJ; /* names of keyword categories '1
133 struct keydata cdata; /* picks up keyworo Lines for pcs '7
134 struct keymarker *markptr; 7* points thru keynarkers in pccata *7
135 int argtistU2C]; I* argument numters of Show *1
136 int invalid; /* flag = 1 if an ar.ument is invatLi i 1
137 int argnuR; /* Loop control: counts arguments '/

13b int num; 7* id number of an argument 'I
139 char replyC256J; 7* gets user repconse to prompt *7
14, irt tu; I* Low it in ranue passed to listcheck '7
141 int hi; /* high id in ranie p;-ssed to Listcheck *
142 char *string; 7* points to indiviouaL arg strinqs *1
143 char -src; 7* utility pointer useo with copy() AI
144, char *dst; 7* utility peinter used with cory() A/
145 char *key; ft points to keyword string in pcdata *1
146 re1ister int pcid; 7* id number of contact in Lists *1
141 struct ndx pcindex; 7* offsets of data in pc file *1
14:- char -ckeyfite[1001; /* for tuilding pckey filename *7
144 static int fidpc; /* file oescriptor for pc data tiLe 7
15.1 static int fid;ckey; 7* tile oescriptor for pckey cata file '7
151
1 52
1 53
154 /****k* make sure file descriptors are closed before using aqair *

155
15b iI(tidpc != 0)
1 7 (

158 close(fidpc);
159 fidpc C ;
160)
161
162 if(fidpckey != ()
163 (
164 close(fiopckey);
165 filickey
166 1
167
168

45

JuL 6 14:04 1979 List.c Paqe 4

169
170
171
172
173 j****wh arse argument string *1
174
175 invalid 0; 1* assume all arguments ok *1
176 arqnum =C
177

179 sre = asr];
k. strin,7 = src;

I1Z dst a src;
1P2 while(copy(9src. &dst, ' 100) > 1)
183 (
184
185 if((rum = table(string, keynames)) < 0)
183 (

187 printt(Q*Zst is not a valid arguient~n", string);
188 invalid = 1;
189)
190
191 arglistE argnum+*] =.nun;
192 string a src; 1* save start of strinq '1
193)
194
195 if C invalid
196 return; I* try aqain 'I
197
19F argtist[argnum 1 = -1; /* terminate List of argument ccdes */
199
?C7

2^1 f(argnum 0z)

Zt.3 roturn;
2V4)
ZO5

2C6 type = argListro;
2C7
2r3 concat(PCKEY, tocv(OP tyre), pckeyfite);
209
21^. Mi (fidpckey x open(pckeyfitee 0)) < 0)
211 (
212 perror("List can't open pckey file");
213 return;
214)
215

2166

219 to a 0;
2ZJ hi 2 CHIECKSIZ -1;

: 221

Z23 do

J4.a 6 14:C4 1979 Lit.t.c Page 5

225 to = listcheck(tiopctist, tiapckey. checkList. Lap hi);
22e- hi =Lt * ChiECKSIZ - 1;
221
22e f 3r(Checkptr =checkli st; checkptr < gchecktiSt[CHECKSIZJ; checartr-s)
229{
23:
231 it(checkptr -> keycount I
232 continue;
233
234
235 pcid =checkptr -> pcnum.;
236 keyntimber =checkptr -> keynum;
231 occurs =checkptr ->.keycount;

2 3') i4((fiAlc = etnoxC gpcid, Ipcinuex)) <)
24C continue;
241
242
243 edtdtata(pcidp fidpc. gpcindex.keytinesp iCpcddta);
244
245 close(tidpc)
246 fidpc = 0.: /* uuark it as beingi closed '
Z47
248 i = 0;
249
25C for(morkptr pcdatd keyptr; ;markjztr#4)
251(
252 if(Ptarkptr -)keytype ==ty~e
253(
254 Mt i** = keyriumber)
255 break;
256)
257
258

26-1 printtC"%s X(%d M)n", irarkitr -> keystring, occLrs);
261
2r.2 for(mr-Inurr = 1 (jr~~type =aratistt arnum 3) 3i raltm+4)
263(
264 for(keynumber t. keynumber < cdata .totkcys; keyr'uier++)
5

266 it(pcdijta keyptr[keynurnter IJ keytypE = argtype
267f
26S key = cdata .keyptrL keynurter I .keystring;
269 printf(" %s: Xs~n~n",- keynameslargtypelp key);
27J break;:
271
272)
213)

275).hile(to >= U
276
277 ctosef fil1ockey)
278 fidpckey 0; /* mijrk it as being closed a/
279)

47

Jut 6 14 :04 19 79 tistcheck.c Pae

1 N

3
4 NAME:

6 Listcheck()
7
.5 FUNCTIONj:
9

13 Filt in .3 checklist indicatingj the presence of keywords
11 in a list of contacts.
12
13 CALLING SE QL'qCE:
14
15 int tidpctist
16 int fidpckey
1? struct keycheck *checklist
18 iot tu
19 int hi

21 PARAMETERS:I 22
23 lidpelist File descriptor for the list Of current contact
24 accession numbers.
25

26 fidpckey Fite descriptor for the *pckey." file Listing

27 keyword id numbers of keywords occuring in
28 contacts.
29
3J m J x Maximum number of keywords per contact
31 from the given category. Effectively gives
32 the Lenoth of the "rows" of the pckey file.
33
34 checklist The structs in this irray .ive inforfrition
35 atout the occurence of keywords in the current
36 contact list:
37
3P 1. The number of permits in the current

34 List which cortairs a given keyword.
4-
41 2. The accession number of one ct the
42 cuntacts that contain~s a giver keywcro.
43

44 ~3. The- number of keywords frooc the niven
45 category which precede tne keyword in the
46 contact nameo oy item 2 aibove.
4?
49 fltag if this f lag is set, only want to get keyworos whose
49 high tits are set to denote non-compliance.
so
51 to Dtfines the Low end of the rafl~e covered by
52 tht' checklist array.
53
54 hi Defines the higjh end of the raace covered by
55 the checklist arriy.
56

48Z

Jut 1. 14:04 19f9 tistcheck.c Page 2

57 RE TUR4$S:

S
59 Rpturrs the smallest id number of the keywords occuring in the current
e-3 List uf contacts, but not yet checked in the "checklist" array.
61 Presumahlty, this value 4iLt he used for the "to" garaseter cr the
62 next caLL to this routine. if there'is no such smatlest id rumber,
63 the rcutine returns -1 to signify that aLL the keyworcs have beer
o4 covered.
65
66 ALGORITHM:
67
68 A pdss is made through the "checklist" array to initialire it to
t.. 9 eipty. Theo, the input tuftfer fcr the current contact List
7J is filled to [repare for the tain Lonj. in the n ain loop, each
71 iteration considers an accession numter of a contact in
72 the urrent List of contacts. 1he reutine foves throLgh
73 tne "rckey." file to Locate the "row" correpconding tc the given
74 contact nurrter. The keys Listed in this row are checked
75 in the "checklist" provided that they falL into the range
76 defined by "to" and "hi", and they match the "flag" parameter.
77
78 CALLS:
79
P0 seekL()
81

8> ALso, 11nix calls:

83I84 seek ()
85 read()
86 perror()
87
FA CALLED BY:
89

9) 1 iT s t
91 List()91
92 l11S T 0, Y
93

94 written by Dan Putnam - sprinq 1979.
95

97

- 99

Iji #include °structdefs.i" I* define keycheck struct 'I
1122

104 #define PCLISTSIZ 25,, I* Luf size for currert pc List *I
1J5 #define PCKCYSIZ i08 /* tut size for pckey file 'I
1 J6
I C 7
i h listcheck(fiopcList, fidLjckev, checklist, to. hi)
19 int fidpctist; I* Iescriptor for current list cf pcs 41

113 int fidrcKey; I* descrijitor for pckey file .

111 struct keycheck checklist[]; I used to keep track of tounc keys a/

112 int to; /6 key io a of base entry in checklist #1

49

JuL 6 14:04 1979 tistcheck.c Page 3

113 int hi; /A key id # of Last entry in checklist 'I
114 (
115 int newto; I* smallest key id > hi -/
116 int pcListEPCLISTSIZJ; I* buffer for current pc List '1

117 int *vcListptr; 1* points thru pctist ,I
118 int *qndiclist; /* points off end of pc List */
119 nt pckeytist[PCKEYS]Z]; /* buffer for pCkey file ,I
120 nt *rckeyptr; I. points thru pckey tntries 01

121 int *endpckey; I* marks end of pCkey buffer *1
122 int pcid; /* id number of rcs in tctist 0/

123 nt kvypc; /* id of pc of pCkey ertries *t
124 mnt keyva ; Jo keyworo value in pckey lite ./
115 nt k-ynumber; /* number of keyvdL in List
126 int nhytes; /* returned from reaos 0/

12/ struct keycheck *checkptr; /* runs thru check List '1
128 int i; /* Loop controL: checklist ,/
12-?
130
131
132
133 newLo = 0077777; * largest pos inteqer 0/

134 keypc = C; /* pc of first keys 01

135
136
137
138
139
140 /*** init checklist to none fnund */
141
142 checkptr = checklist;
143 for(i = Lo; i <= hi; i#+)
144 {
145 checkatr -> pecnum f -1
146 checkptr+* -> keycount C;
14?)
148
140
150
151
152 seek(fidpctist, O C); 1* be sure to start at the becinning *1
153 seek(fidpckey, * L.); /* be sure to start at the becinninq o1

154
155
156 /**00* fill up pc list buffer to get started *1

157
1s if((nbytes = read(fidpctisto pctisto PCLISTSIZ o 2)) < C)
159 (
160 perrur("List can't read current pc List");
161 return;
162)
163
164 pctistptr pctist;
165 endpctist z pctist + (nbytes / 2); /* pts off enc of List o1

166
167

168 /**0 fill up pckey buffer to get started *o

50

Jut 6 14:Q4 1979 tistcheck.c Pa-ie 4

169
170 if((nbytes = read(fiopckey, pckeytist, PCKEYSIZ 2)) (C)

172 verrort"tist can't read pckey fite");

1 73 r eturn;
1 74
1 75
176 ckey; tr = pckeytist;
177 endickey pckeytist + (nhytes / 2); /* pts off enc of List 7/
1 78
1 79
1 '10

11 /****1* rn thru current c List to get keys for each one *1

1 2
1d3 white((Ccid = -pclistptr++) -* null termiratei

1 4 (

165 first check if we have used up pc buffer *1
186

187 if(pctistptr >= endpctist)

189 /****Ak refitl buffer ana reset pctistptr */

190
191 if((nbytes = reao(fidpctist, pctlist, PCLISTSIZ '2)) < C
192
193 perror("List can't read current pc List");
194 return;
195)
196
197 pctistptr = pctist;
19b endpcIist = pctist + (nbytes I 2); /* rts off enc cf List '/
199
200
2C1
2C2 I***'' next, read up to proper section of pckey file 0I
2L.3

2:)4 hiLe(keypc < pcid
25S (

2C6 if(*pckeyptr+ = -1)
keypc +; I* run thru unwai.ted key iOs

2L

210 if(pckeyptr >= endpckey)
211 (
212 if((nbytes z real(fidpckey, rckeylist, PCKEYSIZ 2)) < C

213 (
214 perror("List can't read pckey fire");
215 return;
216)I 217
21M pckeyptr z pckeyList;
219 endpckey = pckeytist * (nbytes / 2);

221))
221
222
723

224 I'*.*'' run thru keys fur Pcid and put in checkList '1

SAM51m

Jut 6 14:04 1979 tistcheck.c Pane S

225
226
227 for(keynumber = 0; (keyvat *pckeyptrt+) != -1; keynumber+#
221S{
229 it(pckeyptr >= endpckey)

233 {

231 if((nbytes = read(fiapckeyo pckeytist, FCKEYSII ' 2)) < 0
232 {
233 perror("tist can't read pckey file");
234 return;
235)
236
237 pckeyptr = pckeyliSt;
236 endgckey = pckeykist + (niytes 12);
239
24C
241
242 if(keyvat < to)

243 continue;
244
245 if(keyvat > hi)

246 {
247 if(keyvat < newto)
248 newto = keyval;
249
Z50 continue;
251 1
252
253 checkptr = checklist + (keyvai - to);
254
255
256 d****** don't bump count if cuplicate keyword in contact */
e 5?7
25S iC checkptr -> pcnum != pcio)

259 (
26? checkptr -> keycount.+;
261 checkptr -> pcnum pcid;

262 checkptr -> keyruir= keynumber;

263)
264 3
265
266
267
268 keypc x pcid + 1; 1. above loop uses up keys for Pcid A/

269

271
272
273 /***** if newto has its uriginat value return -1 all done

274
275 if(newto z= O7?177?

276 return(-1)

278 return(newto)

279
280 1

52

Jut b 14:05 1979 setect.c Page 1

1 #

2 Vinctude "structdefs.i"
3 #incljde "commanlefs.i"
4 Pinctude "pa rams. i"
5

6
7
J

1' select(ovcoie, term)
11 int opcode; /* ij numbLer of command */
12 char term(]; /* null terminated string, argument of command */
13 (
14 extern int phase; /* for switching between scratch tiLes */
15 vterr int fioscratch[2J; /* file uescriptors for scratch fiLes /
16 ant fiapckey; / descriptor for pckey file */
17 ch3r pckeytite[256); /* used to build rckey file name
1, int old; /* tiLe descriptor for scratch file 'I
19 ant nw; /* lile descriptor for scratch file
2C char hufterC256]; /* buffer for user repconse *I
21 char *src; /* utility pointer used with cory() *I
22 char *dst; /* utility pointer used with copyo) 'I
23 struct marker *termptr; /* points to struct aescribine term *1
24 ant num; I* number of pcs from boot dr keypcs */
25 int fitenum; I* cateqory of keyworo $1
26 ant ininumber; I* number of keyword in category *7
27 ant onepc[2); I* buffer for writing List of one pc 'I
28

29 I***** ii term is nuLL, use current ano oto Lists '1

3,'
31 if(termerl == 3)

32 (
33 if((rcole != FIND)
34 {
35 /aaaaaa note that we don't change phase on this ore *7
36
37 new = fidscratch[phase]; /* new pc List will te in phase 'I
3e olJ = fidscrdtch[I - phase]; I* out of phase *1

39
41 num = boot(otd,newnew,opcode);
41 nrintf("%d in current List~n". num);

4 3
44 return;
45)
46
47 t Look at termii to see if user wants just one pc *1
4?
49 if(termLC] 0"')

51 onepcE3J atoi(term *)

52 onepc(1] -1;
53
54
55 phase = 1 - phase; I* maps r to 1 and mars I to
56 new = fidscratcht phase 1; /* new pc list wiLL be in phase *1

53

Jut 6 14:05 1979 setect.c Page 2

5? old = filscratch[1 - phase]; /* old wiLt be out of phase *1
58
59 seek(new, C, 0);
61 if(write(new, orepc, 4) < 4.)
61 (
62 perror("seLect can't write to pc List");
63 exit()
64)
65
66
Ed printt("pc %d selected~n", onepc[o]);
68
69 if(opcode != FIND)
7'
1l num = bool(otd.newnewpopcode);
72
73 printf("%d in currert tist\n", num);
74)
75 r~turn;

77

79 /****** special case: user wants List of all pc's */

81 if(compar(term, ALL) == 0

83 phase = 1 - phase; /* maps 0 to 1 and maps 1 to 0 *
R 4 n(= fidscratch[phase]; I* new Vc list wilt te in phase */
h5 otd= fi'scratch[1 phase]; /* otJ wilt be out of phase
86
8?

num - inittist(new)

printf("d in current List'n", num);

1if(ccode != FIND
92(
93 num boo(oLdonewpnewpopcode);
94
5 printf("%o in current List~n", num);

96 1
)? return;
9e i

99
100
131 1"***** hero is where we handle ordinary keywords *I
1 2
1 Li3
IC4 if((termptr = keyword(term)) ! 0)
135 {

1C6
107 fitersum termptr -) file;
1CS idnumter = termptr -i idnum;
1 09
110 f(fitenum >= MESSAGES)

112 hetp(O, termptr) I* print cut message for user *1

54

JuL 6 14:u5 1979 setect.c Paqe 3

113 return;
114)
115
116
117 /****** reset phase to switch new and old files *1
116
119 phase = 1 - phase; /* maps C to 1 and mars 1 to 0 'I
12) ncw = fiiscratchi[phase J; ik new Cc List wiLL be in phase *1
121 oLd = tiJscratch[1 - phase]; /* old wiLL be out of phase */

122
123
124
125 concat(PCKEY, Lccv(, fitenum), pckeyfile);
1 21
127 if((lidpckey = open(pckeyfiter C)) (0 1
12 {
129 p~rror("select, pckey open");
13C return;
131)
132
133
134
135 I****** use keypcs to get List of pcs fcr non-event keyword
136
137 num keypcs(idnumber, fidpckey, new);
1 3hs
139
14' printf("%d found\,", rum);
141
142 close(fidpckey ;
143
144
145 if(,)code != FIND
146 (
147 num = boot(otdnew,ne%,opcode);
14,3

14Y printf("%d in current tist\n", num);
151)
151 return;

152)
153)

55

Jut 6 14:C5 1979 show.C Page 1

1 N

2
3 #incLude "structdefs.i"
4 MincLude params.i"
5
6 Ndefine LSTSIZ 256
7
8
9

11

12 show(fid)
13 irt fid; I* file descriptor of current pc List *1
14 (
15 struct getlbuf bufin; I* buffer for get() routine *t
16 char tine[256J; -/* gets Lines from getL() '1

1/ int nbytes; I* char count from get(*1
13 char *key; /* points to keyword string a,
19 int type; /* index to categories at
20 int printflag; /* flags printing first key of a type *1
21 struct keymarker *markptr; /* points thru kEyptr array oi rcdata a1

22 extern char *keynames[]; I* names of keyword cateqories *1
23 int keynumber; I* counts fitLed in keyptr entries a1

24 struct keydata pcdata; /- picks up keyword Lines for pcs a1

25 char *srC; /* utility pointer used with cory()
26 char Adst; /* utility pointer used with copy() *1
27 int pcListLSTSIZJ; /* buffer for input and output Lists *1
2F register int j; /* fast Loop counter 't
29 reqister int pcid; I* id number of scurce permit in Lists *1
31 int kpctistrtr; /* points thru List buffer A/
31 int *endlist; /* marks end of pctlst array at
32 struct ndx pcindex; I* offsets of data in pc file *1
53 Lon 3ffset; /* temp copy of rcindex offsets at
34 static int fidpc; /* file descriptor for pc data file *1
35
36
37
3A I*aaa make sure fidpc is closed before usinq a-ain a/
39
40 if(fidpc != 0)
41 (
42 close(fidpc);
43 fidpc = C; I* mark it as being closed a1

44
45
46
47
4d seek(fldoCO); /* make sure we get whole file a1
49
5 white((j - read(fid, pctist, LSTSIZ a sizeof(*pctist))) > C)
51 (
52 j a/ 2; t* j - number of ints read at
53
54 pctistptr pcList;
55
56 white(j-- 99 (pcid a opcListptret) != -1)

56

-~ --

Jut 6 14:05 1979 s"iOw.c Page

57(

59
6U M (f idpc = ;tndx(pcid. £5rcinuex)) (C

.61 continue;:
6 ?
65 rrintf("pc X%u\n", ocid);
6 4
65

f..r(type = C; typ'e < NUITYPS; tyipe**)

7, .rint ftay
71
U 7.rpt keyptr;
73 tfor(keynumcer C; keyriumber < pcdata totktoys; keyrurrer4+)
7!.
75 if(earkptr -)keytype zztype
76
17 if(printitaq)+

76 printf(" \n~s:\r", keynames[type J);
79

6 ~pr in t t %s kn"p markrt r -)keyst ri rq

d32 markptr+*a
83)
84

6 now print text data A/
81

'9
90offset =pcin'Iex catatines;

91
92 i'f(C f Iset < L.f seeki(ficipt, offset) < C)

94 irintf("can't seek to datae'");
95 continue;

9)
97
9:. tufin.fitdes fidpc;

99 roufin.nteft 0
1 r. 0

01white((eabytes = etiC Liner 9butin)) > 0)

lC3 tiner nbytes] C;
1,-4
1r5 if(tineCOJ "0)
1 26 Lr e a k
10 C
1 r, printlC'%%"# tine).;
1019
I10
III close(fidpc)/* aLL done with this one '
112 fidT-c 0; 1& mark it as being closed a

57

JuL 6 14:05 1979 show.c Page 3

113
114 printf("****h**n~n"*)
115
116
III if(pcid zx-1)
IIA break;
119
121)
121

Jut 6 14:04 1919 lookuf.c Paqe 1

1 0

3
4 NAME:

6 lookup()
/

e FUNCTION:

10 Look in the hash table file for the word marker structs correspording
11 to a given string.
12

13 CALLING SEQUENCE:
14
15 char *word
16 int fiteid
17 int checkfta;
1,5 struct marker kfindptr
19 int max
2c
21 PARAMETEQS:
22
25 word Points to the string to be Looked ur in the hashtabte.
24
25 fiLeid The number of the keyhord file in which the bord
26 should te located. If this flag is -1, ther all the
21 kpyword files are searched.
28

2? checkfla- It this flag is G, then . struct whose ! hash values
31 matcn those of the given worc is assuffec to match the
31 word. If this flag is ron-zero, then the keyworc

3? correspondint, to suc0 a strtct is read from its
33 keyword file. and comparei to the qiven word.

34
35 findptr Points to an array of structs which is filled in
3b cy "lokup()" with the structs which tratch thv qiver
37 wora.
3
39 m)X Gives the size of the above array so that "Lookug()"

4. can avoid overwriting that array.
41
4? RFTURrJS:
43
44 The number of struct elements matching the given word.
45
46 If an error condition is encountered on an "openo", "seek()" or
47 a "read()", then "exito" is called to terminate the program.
48

4 i ALbDRITHM:
S ,

51 On the first call, the hashtabte file is opened and the file

5? descriptor is saved in a static variable to save tire or sutsequent
53 c3tls. At this tiqe, "fstato" is c.:led to determine the tenith

54 of the hashtable file measured in marker structs. The CVLRFLOW
55 pirameter is subtracted from this Length to determine the "roduLus".

56 Obviouslyo this parameter must agree bith its counterpart in the

59

JuL 6 14:04 1979 lookup.c Page 2

57 "hash" program.

58

59 To Look up the given wora in the hashtable, the "hashfno)" routire

6J is called to compute the 3 hash values of the word. The index

61 into the hash table is cor-puted from the hash values anc the "wocuLus".

62 A calculation is perfurmed to determine the number of structs that

63 can be read beginning with the index, that will nct cross a 512 tyte

64 b')undary in the file. This makes the initial reid from the hash table

65 about twice as fast as if it crossed the bounoary, anc the first
46 read almost ataays encompasses the collision List.
67

66 The structs in the collision list are scrutinized to see if they

69 match the input word anr those that do are copied intc the array

7C of str'icts indicated by "findptr". If this array runs out of rocm,

71 the structs are no longer copiec, but the count of matching structs

72 still continues.
73
74 CALLS:
15

76 hashfno) To compute hash values of the input hcro.
77

78 seekto) To perform seeks at tong offsets.
79

AC concat() To concatenate strings. (borrowed from CELOS

i
82 gett() To read keywords from the keyword files.

83
84 cqpy() To extract the keywords from the line on which

85 they are declared.
86
87 compar() To compare strings. (borrowed from (ELCS)
I'8
9 41so, the following Unix calls.

90
91 iDenC)

91 fstatC) To get the size of the hash table file.

93 read()
94 exit)

95 n ! rr o)
96 print)
97
98 CALLED BY:
99

100 VariouS programs that need to took up keywords.

1l
1C2 4ISTOR¥Y
103
104 written ty Dan Putnam - fall 1978

1CS
106 This routine is essenti tly identicat to the "lookupC)" useo in

I.7 tte PAPRS system. The "include" files are the only major

18 differences and this chinne was needed only to redefine the

109 "KEYNAiE" parameter. Adaptations were waoe, spring 197?, by

110 Dan Putnam.

111

112 * * ih i h e*.eib***..h**.**eho***eta*..i*.aat*Attt&.t6

60

Jut 6 14:04 1979 Luokup.c Page 3

S113
114

115 NincLude "structdefs.i"
116 Minctjde "Params.i"
11/
118

12 #Je fine iASHRUFSIZ 32 I* fits in one block '1

121 9define OVERFLOW 1C)
122
123 (ooKup(word,fiteidcheckfLao,firidtr,max)
124 char ojord; /* points to word we are Looking for '/

125 int fiteid; I* if -1, any file; if >= O, specific */
12C, int checkttaqi; /* if 1, then check characters 'I
127 struct marker Afir.u vr; It for 9 drkers of found .ords 'I

12 int max; /* Length of firnltr array *1
12' (
130 struct fitestruct I* used for gettini Length of hashtabte *1
131 (
132 cnar jnk[9J; /* don't need this stuff 'I
133 char sizeo; /* high byte of file size */
134 int sizel; /* tow word of file size *1
135 char jnk2[24J; /* don't need this stuff eithtr
136 1 fiLedato;
137
138 struct /* used to toad sizeC and sizel into a tong

139 f
14 char hioyte; I. corresponds to sizeU of fitestruct *1

141 char highest; /* high order byte of a tong -/
142 int tod word; /* corresponcs to sizel of fitestruct *1

143
144
145 struct /* used to access high and Low words cf a tcr ; ,
146 (

147 irit hioits;
14 1 int tobits;

149
1 5ti

151 i it nun.; /* for returning number of firds *1
1 52
153 r~gister struct marker *srcntr; /*ooints thru hashtable '1

15# reJister struct marker *astptr; /* fur frovinq founo markers *1
155
156 struct getlbuf tbufr; /* struct used ty gett() routine 'I
157 int ntkytes; /* char count returned from qett '1
15 char fitername[256]; I* lor tuitoinq k~yword file rape 'I

15Q char keyLine[256]; /* fnr readirti Line from keyhcro fitm p 1
16u char KeystrinqE256]; I* gets keyword string out of keylire C1

1C(1 char -src; /* used with copy routine 'I
16? char -dst; /- used with copy routine 01

163 Lonq index; I, iex into hashtabte 0/

164 tong round4ry; /* 512 byte toundary after inoen '

165 register int readbytes; I* bytes in rarkers up to boundary 'I
166 int hashvat[31; I* hash vatues ,I

166 struct marker hashbuf[HASHOUFSIZ]; I* tuffer for hashtabte 'I

61

Jut 6 14:04 1919 Lookup.c Page 4

169 struct marker *endbut; /* end ot markers in hashtuf i
1703 it evenword; /* number of bytes in hastbuf a
171
17Z static int fidhash; /* descriptor of hashtatte '
173 static Long modulus; /a modulus for hdsh atgcrithm *
174
175
176
177
178 /*a first call initialization '
179
180 if(fidhash Cz 0

Uf2 ii((fidhash =openi(hAShiTBLP 0))< 0
183
184 perror("tookup, can'X open hashtabte");
185 exito;

187
188
189 /a* get size of hashtabte to compute modulus *
190
191 fstat(fidhash, gliledata);
192
193 mudutuS 0
194 mtoduius.hl byte =filedata.sizeO;
195 modut.us.loa word =filedata.sizel; I* size of hashtabte '
196 modulus :/sizeof(*hashbuf); I' number of keyword warkers *
197 m.1dulus OEFO)
1 9d
199

Zi22 /**& compa.te, hash values of word and look into hashtabie *

2CJ4 hishfn(wordp hashvat);

2-,6
2.77 index.lobits = hashvaltEJ;

M5~ index.hibits = hashvatlJ & C?7777;

21n
211 index index X modulus;
212 index =asizpofC *hashbuf)
213
214 compute number of bytes from index to 512 byte lbounoary .

216 readbytes = 512 -Cindex.low word 9 0777);

217
214 readbytes =(readbytes Islzeof(*hashbuf sizeof(*hashbul)
.219
22C M1 readbvtes > sizeof I hashbuf) i readbytes 0)
221 readbytes sizeof(hashibuf)
Z22
225
224

62

Jul 6 14:04 1979 tookur.C Paie 5

?25 if(seekl(fidnashindex) < 0)
226 (
227 printf("faited on seek into hashtable~n");
228 exi ();
Z24)

?3J
231
232 /* lea** leak at hashtabLe entries until an empty slot is found .'
233
234 num = 0; /* none fojnI so far
235 dstptr = finoptr; I* copy to register pointer for extra speed 'I
236
?37 while((nbytes read(fidhash, hashbuf, readbytes)) > 0)
233 {
239 readbytes = sizeof(hashbuf); /* ncxt time fill buffer
24-3
241 eidbut = hashbuf + (nbytes / sizeof(*hashbuf));
242
243 for(srcptr = hashbuf; srcptr < endbuf; srcptr++)
244 (
245 /A***** first check to see if empty *I
246
241 if('srcptr -> file == -1
248 {
249 return(hum). I* thats all folks *1
251 1
251
?52
53 ilf(srcptr -> hashv[]J hashval(O])

254 continue; /* not found *1
255
256 if(srcptr -> hashv(1] != hashval(1])
257 continue; /* not found '/
258
259 if(srcptr -> hashvL2] !z hashvalt2J]
261 contirue; th not found
261
262
203 if(fiLeid >= 0 && srcptr -> file != fiteid
264 continue; /* not in the ri-iht file .1
?65
266
267 if(checkflag
26d
259 I*** check strings to be absolutely sure
2 7 1
271 concat(KEYNAME, Locv(O, srcptr -> file), fitenane);
272
273
274 if((bufr.fitoes = open(fitenamev C)) C C)
275 (
276 perror("tookup can't open keyword file");
277 exit(;
278
219
28n bufr.nleft 0;

63

JuL 6 14:04 1979 Lookup.t Page 6

281
2P2 if(seekt(bufr.fitdeso srcptr ->beginbyte)(C
283{
284 perrorC"Lookup can't seek to key~dord");
285 e ai tO

287

289 it((nbytes =get L~key~inep 8bufr)) <03
?90(
291 printf("Lookup can't reac keyword tile~n");
292 euito;
293
294
295 ckose(bu'r.iides 3
296 keytine~nbytes - 1J 0;
297 src = keyline + 1;
291$ 1st = keystring;
299 copy(9srce 9.dst# I:I 256);

3CI it(conipar(keystringo word) !0)
302 continue; /* no match '
303)
304

306 if(mum*+. < max)
307(
31J8 dstptr -> hasf-v(0J srcptr ->hashv[0];

3C9 dstptr -> hastvU)3 srcptr ->hashv(1J;

31 . 'stpt r >) hashvI(2J srcptr -,hashv[2J;

311 distptr -> file srcptr)file;

312 dstptr ->iclnum srcDtr)i'inhm;

313 ustptr -)beginbyte = srcptr -> beginbyte;
314 dstptr+*;
315)
316
31?
31 x,
310 printf("bad read in Lookupp index %D readtytes % d~n",ir'cen,readbytes);
3 2 L
321

64

JuL 6 14:04 1979 hetp.c Page 1

-1 k

3
4 NAME:
5
6 help()
7
t FUNCTION:
9

11 Print any tines fottooinq the Line wnich declares a keyword in
11 a keyword file.
12
13 CALLING SEQUENCE:
14
15 int fid
1,> struct mirker *termptr
1?
1 PARAMETERS:
19
20 fid File descriptor for output messages. Set tc I
21 for output to the user's terminal.
22
23 termptr Points to a word marker struct identifying a qiven
24 keyword.
25
26 RETURNS:
Z7
2? nothing.
29
3) ALtCRITHM:
31
32 The routine examines "termptr" and returns immediately if it is
53 a null pointer. Otherwise, the cateqory number is appended to
34 the keyword file trefix and the keyword file is olened. The offset
35 storeu in the marker is used to seek into the keyword file.
36 Note that 1 is added to the offset to skip over the 'a' character
37 w-ich marks the keyword. This Line is not printed. rLt subseauert
3,;t tines ire printed until a Line beginning with '#' is founo or
39 until the end of file.
4L

41 CALLS:

42
45 concat()
44 s ekI()
45 gatL()
46
41 ALSO. Unix calls:
4 k'
49 open()
5. perror()
51 write()
52 cLose()
53
54 CALLED BY:
55
56 1ice)

65

Jut 6 14:04 1979 hetp.c Page 2

57 stectC)
58
5 HISTORY:
6 r

61 written by Dan Putnam - faLL 197 - for PAMS system.
62 Adapted for use by the JICEP system - spring 1979 - by changing the
o "inctuJe" files to define the "KEYNAME" parameter differentl y.
64
65

66

61
7? #include "structdvfs.i"
71 Rinctude "params.i"
72
73
74 hetp(fid. termptr
?5 int fid; /* descriptor of outpu file

76 struct mdrker *termptr; /* describes keyword *

77
79 char tiierame Ol;

?y char Linetl03; 1, input line from file "1

8j struct getLbuf Duffer; /" used by gett routine A#

81 int nchars; #* number of chars in Line *7
82 int linecount; *, number of Lines printed .1
23

84
115 if(termptr ==0)
66 {
87 /.***** nothing to prin.t */
88
3Q rpturn;

9?

9 concat (KE CIEA ,tocv(O,termptr°>fie) fitename);
94 if((tuffer.fitdes = cpen(fiLenameG)) < C)

96 perror("helpr can't open");
9? return;

99
1CC
10 buffer.nteft = 0;

1 ? if(seekth(buffer.fildestermptr->beginbyte + 1) < 0)
1C3 {
14 perror("helpr can't seek to keyword~n");
1C5 close(buffer.fildes);

1C6 return;
1C?

109 :inecount = 0;

411 white((nchars = gett(Line, &buffer)) > 0 &9 line[O)=
111 (
11P if(Ltneco~ut44 0=)

6

JuL 6 14:04 1979 hetp.c Page 3

113 continue; /* skip over first tine 'I

114

115 tineCnchars] = 0; /* insert nutl atter the end-otfine. o I

116

117 write(fid, tine, nchars);
118

119
126 cLose(buffer.fi ldes);
121 1

67

/lIllllllJ~l~lliii ;-l -

Jut 5 15:09 1979 /certlpams/sourceliam.c Paje 1

1 U

3
4 NAME:

5
6 ixm()

FUNCTION:

Create a unique name which can be concatenated with scratch file
11 names to revent multiple instances of a program from overwriting
12 each cthers scratch files.
13
14 CALLING SEQUENCE:
15
16 char *me
17 int iam()

19 PARAMETERS:
2C

21 me - :oints to a character buffer of at least 3 characters.
22 This tuffer receives the unique name, which consists cf a lower
23 case Letter, followed by a "#" character and a null character.
24

25 RETURNS:
26
27 positive integer if name creation was successful.
28
29 neljtive integer otherwise.
3 1

31 ALGORITHM:
32
33 The rf,utine uses the "creut" system call to attempt tc create
54 a file ramed with the string "me". The "creat" fails if a file
35 already exists with this name ano does not have write access.
3(, !+ this occurs, then the name is atterec anc the process continues
37 until a uniuue name is found or else the lower cpse pre-fixes have
3 , been exhausted. In the latter case, -1 is returned tc siqnify
39 fiiture in creating the unique name. When the proceaore succeeds
4:. if, creating a unique name, the file opened by iar() is closeo
41 before returninq. It is not expected that this file will be
42 used for anything except to mark its nawe as already teing in use.
43
44 CALLS:

45
46 creat() UJnix system call to create files.
41
48 CALLED BY:
49?

51 usually a main program.

51
52 IiISICRY:
53
54 written hy Dan Putnam - fall 1978
55

68

JUL 5 15: 09 19 79 /cert/f-ams/source/ian.c Paqe

57
58
59
61) iam (me)
61 char *me;
62 (
613 it i;
64 int fl1
65 Me(oJ = *a,;
66 mreti) =10

66 for (i = ; i < 26; i++)
69

7L i (fid creat(me*0444)) C0)
71

73
P474 eLse

75
76 close(fid);
77 return~fid);

79

s1 return(tid);
82

69

JUL 5 15:C9 1979 /cerL/ ams/source/concat.c Paqe I

1I I C 0 N C A T (Note: Borrowed from CELDS, Thanx!

3 Concitenate two strin--s into one string. Concat returns a
4 * pointer to the end of the resultant strin j so that successive catLs

5 * to Concat ffay be made easily.

7 *Ar-jurents: first pointer to first string
~ *second pointer to second string
-) *result pointer to end of resulting string

10 *

11 *Returns: pointer to end of result string
12
15 *Calls: none
14 a
15
16 char *concat (first, second, result) char afirst,
17 * second,

1 *resu It;
19 {
2 j while (*result++ *first++); / Cpy first strinq to result a
21 --result; 1* Bck up over nut * /
22 while COrlsutt4 * second*#); /* Copy second string to result a
23 -- result; /* ack up over nut '

?4 return (result);
* 25)

70

Jut 5 15:09 1979 /cert/pdms/sourcelcopyfite.c Page 1

1 U

3
4 NAME:
5
6 copyfiLe()
7

FUNCTION:

Copy the contents of one open file to another.
11

12 CALLING SEQUENCE:
13
14 int fidin
15 i-it fi tout
16
17 PARAMETkRS:
18
1 fidin file descriptor of source file opened fcr reading.
20
21 fidout file descriptor of destination file overed icr writing.
22
23 RETURNS:
24
25 nuthinj.

26
27 ALGORIT144:
23
24 Ttie routine first seeks to the start of both files in case cther
31 proceoures have used the file descriptors. Then the routine reacs
31 from the source file in a Loop and writes the same nurber of bytes
3Z to the destination as it read.
33
34 CALLS:
35
3o Unix clls:
3,

sek()

3 lread()
4,; write()
41 jP rrOr()

43 CALLED BY:
44
45 pams (main program)
46 restore()
4? s.1ve()

4v IISTiRY:
5 r

51 written by Dan Putnam - fall 1978
52

54
5

56

71

Z-7-:Z

JuL 5 15:09 1979 /certipams/sourcelcopyflle.c Page 2

57 copyfite(fi'din. fidout)
5? int fidin; I. descriptor of source fite
59 int fidout; I. descrip~tor of destiOatiof l ite
6J j
61 int nbytes;
62 char buffer[51lZJ
63
64 seek(fidin. 0, 0); /* from beqinninq
65 seek(fidout, Do 0); /* from beginning
6n) white((nbytes = read(fidin, buffer, 512)) > 0

{1
64I if(viriteC fidouto buffero flbytes) < nbytes)
69(
1.) perror('*save write error");
71 ciose(fidout)

72 return;
73)
?4
75
76
77 if(nbytes < 0)

(F
19 perror("copytiLe, read error");

72

Jut 5 15:101 1979 /cerl/pams/source/resp.c Page I

1 N

3
4 NJAME:
5

6 re .p()
7
e FUNCTION:
9

1ret a Line of user response furm the terminal.
11
12 CALLING SEQUENCE:
13
14 char *bfr
15 int retp()

1? PARAMETERS:

19 bfr Points to buffer for user response.
21
21 RETURNS:
22
23 Returns the number of characters in the response exclusive of *\r',
24 or returns -1 on end-ol-file.
25
26 ALGORITHM:
27
28 Tie routine works with i LuiLt it. linit of 8C characters per resLonse.
29 Characters are read from the terminal until either 8C are reaL or
3,1 an end-of-Line or end-of-fiLe is encountereo. If the last character

31 is an end-of-Linee then it is overwritten with a nutl.
32
33 CALLS:
34
35 nothing.
36
37 CALLED BY:
3 '

39 p ms (main program
4" slect()
41 k y wo rd)
42 List()
43 g teff()
44 qrtsmons()
45
46 H IS1ORY:
47
48 written by oar. Putnam - fall 1978
49

51
52

53 Ndefine MAX CdR 80 It maximum response length

54
55

56 resplbfr)

73.*~. . ,,->,~* i

Jut 5 15:10 1979 /certl/ams/source/resp.c Page 2

57 char *bfr; /* character buffer for user response a,
58
59 reFister int countdown;
6J reiister int chr;
61 rtgister char *ptr;
62
63
64 countlown = vAXCHR;
65 ptr = -fr;
66
&7 do
63 (
69 *Ptr** = chr = qetcharo;
70
71
72 if(chr == \0)
73 return(-1)
74
75
76 white(--countdnwn 99 chr '\n);
7
76 if(chr != '\n')
79 {
6 wiiLe(4etchar() ! '\n'); /* flush input *1
81 * Gtr = ;
82)
83 etse
84
85 *(--,tr) J; I* repLace CR by nutt a,
86)
87
1 return(ptr - bfr)
9

9 1

74

Jut 5 15:09 1979 /cerl/.,ams/source/copy.c Page 1

1 0
2 *l**hli h.A*i w *.i*hh** *. &**hih lh*****kili t*h********liillll t t****i****tiC~*

3
4 NAME:

6 copy()
/

FUNCTIOe:
V

IC Move chiracters from one string to another and update pointers
11 to source and destin3tion lor subseouent calls.
12
13 CALLING SEQUENCE:
14
15 char **source
16 char **dest
17 char oelimiter
Ih int m~xchurs
19
2') PARAMETERS:
21
2? source is the address of a pointer to the source character strin-.
23 tnis pointer is updated to point past the last character movec.
24
25 dest is the address of a pointer to the destination string.
26 This .ointer is Left pointing past the null character terminating
2? the strinq that was moved.
2F
29 lelimiter is the character signalling the end of the source s+rinq.
30 If this character is not encountered, a nuLL character wilt halt
31 the transfer of characters.
32
33 maxchars is the size of the destination string. If there are
34 more characters to be moved than maxchars, a -1 is returned
35 and copy does not overwrite the end of the tuffer.
36
37 RrTURNS:
3 M
39 -1 if the size Limitation given by maxchars can not te met.
41
41 otherwise copy returns the number of characters moveo irLcucinn
42 the null character terminating the destination string.
43
44 ALbORITHM:
45
46 The ccpy routine skips over Leading blank or tab characters.
47 Embeaded substrin(.s of Ltanks or tabs in the source string
46 are condensed to one oLank. The transfer of characters stops
49 when the deLimiter character or a null character is erccuntered
50 or when the size Limitation given by maxchars is met.
51 The source pointer is never movec past a null character.
52 In tivis case, subsequent calls to cony move an enpty strinq.
53 If the aetimiter is not null and it is encountered before a nut(,
54 then the source pointcr is moveo past the delimiter.
55 Thus, successive calls can move substrinis serarated ty the cetimiter.
56 The destination strin:s is null terminated and the destination

75

Jul 5 15:09 1979 /certlpams/source/copy.c Page 2

57 pointer is left pointinq past the null. Thus. repeated calls

58 t cot'y can move stritigs into a shared tuffer.
59
6.1 CALLS:

61
62 nothing
63
64 CALLED BY:
65

66 alt kinds ot procedures that move strings around.
67
68 COMMENTS:
69
7r copy() can be used for several different purposes:

71
72 1. cleaning a string to eliminate extra blanks or tabs.

73
7. 2. parsing a Line into fields.

75
76 3. counting the number of fields on a Line.
77
78 HISTORY:
79
80 written by Dan Putnam - fall 197a
81

83
84
F5 copy(source, dest, detimiterp maxchars)
S6 char **source; / points to a pointer to source string '!

i7? char -*dest; I* points to pointer to destination
43 char delimiter; /* stop copying when this char is fcund *1

9 int m~xchars; /* size of destination '1
Q' 1
91 rcqister char *src; / copy of source for speed, esthetics *1
92 register char chr; /* temp for *src to save inairectior a,

93 register int slack; I* room left in destination *1

94 char *dst; /* points to destination '1
95 int ret; /* return value

96
97
98
99 src a *source;
1GG dst = *dest;
101 slack = maxchars; 1* avaiLable room *1
1CZ
113 if(stack <= C)
1Cf {
105 return(-1)
16)
107
10x

109 /a**** first throw away Leading blanks and tabs a********1

1in
111 white(*src #c ' s ma \t*)
112 src*4;

76

Jut 5 15:09 1979 Icert/PamS/Source/covy.C Page 3

113
114
115
11 /****t* now run through the rest of the strirg ******1
11?
118 do
119 f
120 f((chr = *src) 0)
121 Lreak;
122

123 src+*; /* not null, so move on */
124
125 if(chr == delimiter
126 break;
127
12,5
129 if(chr ' II chr % t') /* if btank or taL
131 (
131 hil((chr *src) = II vhr \t' I
132 src+2;
133
134
135 if(chr == 0
136 break;137

13
39 if(chr == detimiter

1460h

141 srt*4; 1* move past cielimiter .

142 break;
1 43
144
145
146 chr ';

149 * st++ z chr;

151).hit,.(-- stack

153
154 it(stack > 0
155 (
156 ret = -naxchars - stack + 1;
157)
151 eLse
159 (
160 / Looks Like we didn't find the end but ran out of rooi '/
161
162 --dst;
163 ret = -1;
164
165 /*bk*** move src past delimiter or up to nut byte
166
167 wnite((chr = *src) = oetimiter 9& chr 0: C)
168 src*+;

77

+' I I
-

+ +J" " " "+ ''+L"a"w m t ' """ Ali

Jut 5 15:09 1979 /cerL/pams/source/copy.c Page Is

169
170 if (chr 0)
171 src++;
172
173)
174
175 *dSt++ C; i' Leave dst pointing Past nulL byte '
176
177 *Source =src;
178 *oest =dst;
179 rpturn(ret)

78

Jul 5 15:09 1979 /certl/pams/source/eaecute.c Page I

1 I* E X E C U T E (Note: Borrowed from CELDS, Thane!)
2 * execute - send a string to sh to be executed
3 *

4 * cxecute (command) ; char *command
5 *

6 * Forks off a process to execl the shell with a one-Line
7 * command in the siring "command". waits for return of

• the child Lrocess.
9 *

10 * Siqnals are set up so quits will interrupt the child

11 * irocess, not the parent.
12
13 * Culs: fork, signal, execL, wait
14 * 6tobaLs: none
15 * Last modification: 31 mar 77
16 *
17 */
18
19 execute (command) char *command;

21 rgister int child,
22 signatstatus;
23 int waitstatus;
24
25 if ((child = fork 0) (0) /* Set up the fcrk k/

26 return (-1);
27
2? I* The child does the execl using the argument string *1

29 if (child = 0 0) {
,j signat (2o 0);

31 execl ("ltin/sh", "sh", "-c". command, 0);

32)
33
34 sinnatstatus = sicnal (2, 1);
35 whiLe (wait (Kwaitstatus) ! child); /* wait for child *1

36 signal (2, signatstatus);
37
38 return (0);

39

79

79J

Jut S 15:10 1979 /cerl/pams/suurceitabte.c Page 1

1 N

3
4 NAME:
5
6 tabte()
7
8 FUNCTION:
9

1j To Look up a character strinq in an array of string pointers.
11
12 CALLING SEQUENCE:
13
14 char *string
15 Char **ptrarray
15 int table()
17
Ip PARAMETE.S:
19
2C string - points to a null terminated string of characters.
21
22 ptrarray - points to a null terminated array of character pointers.
23
24 RFTURNS:
25
26 -1 if the strin.i is rot foLnd in the array of pointers.
27
28 otherwise table() returns the inaex of the first pointer
20 i. the ;rray pointing to an identical string.
31
31 EXAMPLE:
32
33 Define "name" and "nametable" as follows:
34
35 char *name "jody";
36
37 char *nametabte[J

39 "fred",
40 "jody",
41 "pat",
42 r)
43
44
45 Then the call "tabte(name. nametabte)" returns 1 to incicate
46 that "nametabtet1)" pnints to the sane strinj as "name".
47 Houever, "table("joe", nE ,able)" returns -1, since "joe"
41 is not Listed in "nametabte".

S ALGORITN:

Si The "ptrarray" is searched sequentially, and if a poirter in the
array points to a strinn agreeing with that indicateo Cy the
"strinj" ar-iument, then "table" returns the index of that element
in the array. If a null pointer is found in the array* then -1
is returned.

80

w - -

Jut 5 15:10 1979 /ceri/pams/source/tatte.c Page 2

57
58 CALLS:
59
6 i compar() A routine borrowed from CELDS to test whether
61 strinq pointers point to identical strings.
62
63 CALLED BY:
64
65 usually routires that need to parse comeand strinas or check
66 fur "legaL" values of string variables from amon-j those in a
61 small, pre-defined List.

: 0A

69 HISTORY:
71

71 written Uy Dan Putnam - fall 1978
72

73
74
75
76 t bte(string,ptrarray)
7? char *string; /* pts at null terminated string */
78 char **ptrarray; 1* pts at nuLl term array of char ptrs *1
79 (
8f! register char **ptrptr; /* copy uf ptrarray for speed *1
81 register char *ptr; /* coly of *r.trptr for speed '1
82 register int i; /* fast Loop counter
83
84
85 ptrptr = ptrirray;
F,6 for(i = C; (j;tr = *ptrptr++); i++)
8? (
33 if(cnipar(string.ptr) = C)
89 return(i);

9.1)
91

92 rzturn(-1);
93

81

JuL 5 15:10 1979 /cerl/pams/sourcelsave.c Page

1 #

3

4 NAME:
5
6 save()
7

FUNCTION:
9

11 Sive the contents of the current scratch file of id numbers in
11 a file named by the input character string.
12
13 CALLING SEQUENCE:
14
15 char *filename
16
17 PARAMETERS:
13
19 fitename Points to the string naving the output file.
20
21 RETURNS:
22
23 nothing.
24
25 ALGORITHM:
26
27 The routine attempts to create a fite named by the "fitename"
28 argument. If this attempt failso the routine prints a eessage
29 to that effect and returns. If it succeeds* then the "cocyfiLeo"
30 routine is used to cooy the contents of the current scratch file
31 to the file ahich has oeen created.
32

33 CALLS:
34
35 copyfite()
36
37 ALso. Unix calls:
3F8
39 creat()
43 seek()
41 perror()
42
43 CALLED BY:
'4
45 pass (main program)
46
47 HISTORY:
48
49 written by Dan Putnam - fall 1978

54
51 **hO.***hihI***i***t*******t**i*O*O*****iitl ****iIi*iOttlhh*iht**Ii*e*B&it

52
53
5'
55 save(fitlename
56 char filename[l; I* string naming output fite

82

Jut. 5 15:10 1979 /cert/pams/source/save.C Page 2

57 (
56 extern int phase;
59 extern int fidscratch[23;
61) int fidlin;
61 int fidout;
62
63 fidin = fidscratchE phase 3;
64 seek(fjdino 0o 0)
65
66
67 if((fidout = creat(fitenameo 0666)) < C

68 (
69 perror("sove can't create fite');
?C r'turn;
71
? 2
73 copvfite(fidin, fidlout)
74

A 75 1

83

Jut 5 15:10 1979 /certl/ams/source/restore.c Page 1

1 *

3
4 NAME:
5
6 restore()
7

FU14C TION:
9

10 Restore a List of data accession numbers to current status.
11
12 CALLING SEQUENCE:

13
11 char *fltenaire
15
16 PARAMETEQS:

18 fiten~me Points to string naming the file of accession numbers.

19 It filename points to a nutL string, then the previous
2. list is restored to current status.
21
22 RETURNS:
23
24 nothinj.
25
26 ALGORITHM:
27
2P The "fitename" parameter is checked to see if it points at a nutt
29 strinj. if so. then the global "phase" variable is reset to switch
30 the scratch files. If the "filename" parameter points at a non-nutL
31 string, then the routine attempts to open the tile. If the open
32 is successfuL, then "phase" is reset and "copyfiLeo" is catted
33 to cuc.y the contents of the input file into the currert file.
34
35 CALLS:
36
37 copyfiteC)
38
39 ALso, Unix calls:

41 open()
42 perror()
43
44 CALLED BY:
45
46 pams (main program)
47
49 HISTORY:
49
50 written by Dan Putnam - faLL 1978
51

53
54
5S
56 restore(fikename)

1.:: 84

Jul 5 15:13 1979 /cerl/pamsisourceirestore.c Page 2

5? char fiLename[]; /* names file to be reaj in. aI
58 {
59 extern int phase; /* fur sditching scratch fites *1
6.1 extern int fidscratch[2J; /* scratch file descriptors *1
61 int fidin; /* descriptor for restored file a1
62 int fidout /* capy of scratch descriptor *1
63
64
65 if(*1iLename ==0)
66 {
67 /***.** phase switch effectively restores old List
6d
69 phase = A - phase;
7'. return; /* thdt's all there is to it i1

71
72
73
74 if((fidin = open(filename, C)) < 0
75 (
76 perror("restore can't open file");
17 return;
78
79
80 hase I - ahase; I* switch scratch lties */
81
82
83 fidout lidscratch[phase 3; (* write to in-phaSe file '1

64
P 5 copyfiLet fidin, fidout);
86

85

I.

Jot 5 15:1C 1979 /cert/pams/sourcelpeek.c Page

1 #

3
4 NAME:
5
6 peek()
7
h FUNCTION:
9

1r) Invoke the editor on the keyword file corresponding to the
11 c teqory roame (liven by the input argument strinq.
12
13 CALLIN G SEQUENCE:
14
15 char *category
16
1 PARAMETERS:

19 cateqory String naming the category that the user wants
2 C to inspect.
21
22 RETURNS:
23
24 nothing.
25
26 ALGORrTHM:
27
28 The rcutine begins by checking to see that "category" matches
29 an entry in the "keynames" array. The index of a matching
31 string in that array is the keyword file nurter of the corresponcing
31 file of keywords. This number is appended to the keyhord file
32 prefix and the editor is invoked on this file using "executeo".
33
34 CALLS:
35
36 t bte()
37 concat()
38 executeo
39
41 Also, Unix routines:
41
42 Locv()
45
44 CALLED BY:
45
46 pams (main progjram
47
48 HISTORY:
49
50 written by Dan Putnam - fait 1918
51

52
53
54
55
56 peek(category

86

JuL 5 15 :10 19 79 /cerilIpams/sourct/veek.c Page 2

57 char *category; I' *nae of a keyword category
58 (
59 char commandER,0.; / * argument st rin, for execute routine '
60 extern char *keyprefix; / * keyword fite name Prefix .
61 extern char *keyna-mesU; /* flaies of cateqnries a

62 it num; /I* category number '
63
64 if((num ztabte(categorye keynames)) < C)
65 (
66 printt("*'s is not a keyw.ord cateqory~n", category);:
67 return;
68)
69
7.j
71 concat('*ed "r keyprefin, cometand):

72concat(command, tocv(0,num), command)
73
74. execute(command ;
75

87 ____

Jul 5 15:G9 1979 /cerL/ams/source/keyword.c Page 1

1 #

3
4 NAME:
S
6 keyword()
7
h FUNCTION:
9

1C Lookup a string and prompt for correct category in case of oupticates.

11
12 CALLING SEQUENCE:
13
14 char *term
1 struct marker *keywordo).
16
17 PARAMETERS:

19 term Points to the string to be Looked up.
20
21
2 RETURNS:
23
24 keyword() Points to a marker struct which contains data on the

25 strina which has been looked up.
26
27 ALGORITHi:
28
29 Most of the work is lone by the "Lookupo)" routine; this routine

31) is prin3rity just a user interface to "tookup(". A call to

31 "Lookup()" is ;,erformed with the parameters set to find all
32 occurences of the strinq in the oatatase and check the spetting

33 character for character. If no instances are found, then a'.essjqe

34 to thot effect is printed and a zero pointer is returrec.
35 If more than one instance is foundo the user is prompted to

56 name uhich category he wants. A pointer to the appropriate
37 marker struct is returned.
38
39 CALLS:
40
41 Lookup()
42 resp()
43
44 CALLED BY:
45
46 Letter()
47 P ms C m31n progrdm)

43 select()
49
53 HISTORY:
51
52 written by Dan Putnam - fall 1978
53
54
55
56

88

Jut 5 1S:09 1979 /cerL/pams/source/keyword.c Pa'ae 2

57 NincLude "structdefs.i" /* marker dect a/

56 #define MAXF IND 5C It found array size 'I

59
6! keyword(term)
61 char *term; I* Lookup this term

62 (
63 extern char *keynamesr] I nvoes of keyword cateiories .
64 char buffer[g]; ia for qettini user response '/

65 int index; I* loop control: founo words .

66 int fitenum; I* file number of a fcund word 'I
67 static struct marker copyListtMAXF1D]; I* iaenticat cories
68 int cJpies; I' counts number of copies

69
70
71
72
73 /.****** Lookup: any category* check strings
74 copies = Lookup(termo -1, 1, copytist, MAXFIND);
75
76
77 I**i** if ccpies > 1, prompt for correct category */
73
19 if copies <= 0)
8fl
81 printf('can't find 'Zs'%n", term);
82 return(O);
83
84
85 if(copies =1)

87 index = Q; /* copytist(C] points to the only find 'I

63)
89 else
90 (
91 /****** prompt for the correct category
92
93 printf("Which category?\n");
94
95 for(;;)
96 (
97 for(index = 0; index < cories; index4*)(i98

99 filenum = copyListE index I . file;
1%u printt("Xd: %s~r.," index + 1, keynaces[fitenum 3);
101)
102
103 resp(buffer);
1G4
' C5 index = atoi(buffer) - 1;
10o
10? if(index >= D Z& index < copies
10i break lb a valil resconse
109
lia
111)

11Z

89

Jul 5 15:09 1979 /cerL/pams/source/keywotd.c Pago

113
114 retur~i(RcopyList[indexm I
115)

90

Jut 5 15:09 1979 Icerilpamslsourcelhashfn.c Page 1

3
4 NAME:
5

6 hashfn()
t
A FUNCTION:

1. Convert a null-terlrinated character string to a 3-woro array
11 of integer hash values.
12

13 CALLINdG SEQULICk:
14
15 char *string
16 int *hashout
17
lb PARAMETERS:
19
211 strin! - points to nutE-terminatel strinq to be hashec.
21
22 hishout - points to output array of 3 hash values.
23
24 RETURNS:
25
26 nothing.
2?
28 ALGORITHM:
2?

3; One pass is made through the string for each of the 3 outtut
31 nash vaLues. On a given pass, hashfno) treats the characters
32 in the input strinj as 5, 6, or 7 bit string;s, respectively.
33 This is dcco-optished uy mcsking off the atpropriote nLmber ot
34 high order bits in each character (i.e. 3, 2, or 1).
35 The tyLorithm effectiveLy treats the input string as a bit
36 string. whic. it "wraps around" the cutput hash value irteger.
3?
30 The routine initializes the hash values to zero and processes
39 the input characters untiL the nuLL terminator is enccunterea.
4) As e3ch input character is corisioere, the Lcw order tits
41 ire exclusive-ored into the hash value after beinc shifteJ
4 2 past the bits from trp ;rkvious character. if this results
4' in losing bits off the eno of the integer, the Lost bits
44 are exctusive-ored onto the Low crder bits.
45
46 For exampLe, when the first hash vaLue is comjuteo, the
47 first three characters of a string ccntribute their lcw order
48 5 hits to give the to, orcer 15 tits cf the inte,4er hash vatLe.
49 The toa order 5 bits of the next character are exclusive-nreo

into the output intejer as fot Lows. The tow order bit is
51 exctusive-ored onto the remaining high tit of the integer, and
52 the neyt 4 bits ,ire exclusivt-ored orto the first 4 Lits uf the
53 irlteler. The fifth character is shifted into p(ace beginnino
5' aith the fifth bit of the outrut int-qer.
55
56 CALLS:

91

JuL 5 15:C9 1979 Icert/pams/source/nashfn.c Pane

5?
58 nothing.
59
6J CALLED BY:
61
62 hash The program which creates the hashtabte file.
63
64 Lookup() The routine used to took up terms in the keyword
65 files.
66
67 HISTORY:
68
69 written by Dan Putnam - fall 1978
70
71 COMMENTS:
72
73 The three hash values generated by this routine virtually
74 iientify strings uniquely. The three hash values are essentially
75 orthogonot in the sense that if two terms cottiae under one
76 of the hash functions, there is no increased liketyhood that
77 they will collide under either of the other two.
78
79 In a file of about 13,000 english words, no two woros were
81 found that collided under both of the first two hash functicns.
81 When the third function is also considered, it seems virtually
82 assured that if two terms agree in all three hash vaLues, then
83 the two words are identical. If it is assumed that the bit patterns
34 of the hash values are random, it may be computed that the chances
85 o4 finding a collision in a collection of 10,C00 words is Less
?6 than cne in a million.
87
38

90
91
92
93
94 ant maskarray[]
95 (
96 3?7
97 377.
98 0177,
99);
100
101 ant nbitarrayE3
102 (

1 -4 6,
105 7.
1C6)
10?
1C3 hashfn(string, hashout)
109 char *string; I* string to be hashed '1
110 int *hashout; /* 3 word output array
111 (

112 register int numbits; I' number of bits usec in hash 0/

92

Jul 5 15:09 1979 IcerL/pamslsource/hashfn.c Paqe 3

113 int mask; I* masks Low numbits

114 char *cpt; /* points thru string

115 reqister int chr, /* temp copy Of *Cpt

116 register int shift; /* shift chr ty this nary bits *1

117 int hashv; /* gets hash value

118 int i; 1* Lcop control: 3 hash values *1

1 11012i

121 for(i = C; i < 3; i++)

122 (
123 m3sk maskarray[i];
124 numbits = nbitarray[i];
125 hashv = C;

126 shift = (-;
1z7 cpt = strin,1;
12'i while(chr = *cpt++)
129 (
130

131 chr =9 mask; /* remove unwanted tits t

132 hashv (chr << shift); I* shift into Place

133 shift (shift + numbits) & GI?; I* =+ numbits mcd 16

134

135 if(riumbjts > shift) /* if we wrap around .ord *1

136
131 hashv =" (chr >> (numbits - shift));
13)

139
147 hishout[i] hashv;
141
142
143

93

Af)PAO15 991 CoNSTP'UCTION FNGIPILER! 6 PESEAR 1 LAB (ARMY CHA PA AN It F/ 9/
INTERAGtNC Y/ £TERGOVERNMENTAL COORDINRTION FOR NAR TPAL PL.PT
MA Y 80 R D WFASTER, 1 E PUTNA M

UNCL,. SIP! 0 C ERL-TM N A 7 NL N

2N

IEEEEEEEEEL

=2.2

IHII . 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL FAHLIf4AU .r -ANDAKU 196 A

JuL 5 15:10 1979 Icertl/pms/source/seekt.C Page

1 N

4 NAME:5
6 seekt()

7.3 FUNCTION:

9
1N Perform seeks into tiles with tonq offsets.11

12 CALLING SEQUENCE:
13
14 int fid
1s tong offset
16
17 PARAETERS:

19 fid is the file descriptor of an open file.
20
21 offset is the offset from the beginning of the file to which
22 seek() eill seek.
23
24 RETURNS:
25
26 returns the same value as the seek() system call returns to seekSo.
27 -1 signals an error condition.
28
29 ALGORITHM:
3)
31 s ekt() tests offset to see if the seek can be Performea as an
32 ordinary short integer seek. If noto then seekL() first seeks
33 by blocks (512 bytes) and then seeks the rest of the way ty
3d bytes,
35
36 CALLS:
37
3d seek() - Unix system carl.
39
40 CALLED BY:
41
42 all kinds of routines that read from random locations in large files.
43
44 HISTORY:
45
46 written by Dan Putnam - fall 1978
47

49

51
52 seekl(fid, offset)
53 int fio;
S4 tong offset;
55 (
56 struct I* for accessing hi end to words of offset *1

94

- -

JuL S 15:10 1979 /cert/pams/source/seekt.c Paqe 2

57 (
58 int hi;
59 tnt La;
60
61
62 register tnt code; I* return code from seek
63 register int i;
64
65 it(offset.hi !m 0)
66
6? if((code • seek(fid, (i = offset./ 512), 3)) < 0)

6(return(code);
?^)

71

72 ese
?3 return(seek(fid. Ci a offset 1 512), 1));
74)
73 else

76 return(seek(lid, oftset.te, 0));
77

95

Jut 5 15:09 1979 /certlpaas/sourcelcompar.c Page I

1 I- C 0 P P A R (hate: Borrowed from CELDS. Thanx!)
2 * compar two nult-terminated strings
3 *
4 * The chiracters at "s" and "s2" arte compared untit one tersinates.

5 If the east characters compareo are equa(* zero is returnec;

6 * if the char from "sl" is > "s2'* a positive value is returned.
7 * otherwise a negative value.8 *

9 * Calls: none
10 * Globats: none
11 LZst modification: 31 mar 77

12
13 /
14 int compar ($1, s2) char *%1
15 *s2;

16
1? register char *P'

18 *q;
14 register int greater;

20
21 p = Si;
22 q = S2;
23 uhite ((greater = *p - eq#*) '* 0 55 *p+. !a 0);

24 return (greater);

2l "

JuL 5 15:09 1979 /cert/pams/source/booL.c Page 1

1 N

4 NAME:
5
6 booL()
7
h FUNCTION:
9

10 Perform UooLean operations on files.
11

12 CALLING SEQUENCE:
13
14 ant fida
15 int fidb
16 int fidc
17 int opcode
18 int boot()
19

20 PARAMETERS:
21
22 fida FiLe descriptor of the first argument file.
23
24 fidb File descriptor of the second arqument file.
25
26 f idc File descriptor of the output tile.
27
23 opcode Specifies the operation to be performed:
29
30 1 - fiLe(a) A4D fite(b)
31 2 - tile(a) UR fite(b)
32 3 - fiLe(a) EXCEPT fiLe(b)
33
S4 RETURNS:
35
36 Returns the number af items Listed in the output fiLe.
37
36 AL6&RITHM:
39

4C The input files are read and their contents are used as indices
41 into the "check" array. Vits are set in the "check" array elements
42 to indicite whether a given entry is present in either cr bcth
43 of the input tiles.
44
45 When the above step is completedf a cass is made through the
46 cneck array. The index of a "check" array element is written to
4? the output buffer dependinq on its membership in the input files
48 and the value of the "opcode".
49
so AND betonqs to file(a) and to fit(t).
51 (JR teton,is to file(a) or to tite(b) or both.
52 EXCEPT belongs to file(a) but not to fite(t).
53
54
55 Note: The "check" array is an array of SPMAX chdracterso where
56 SPMAX is currently oefined at SoCU. This parameter shouto

97

-- _ _II_ _.. _ _ ____'_..I

Jut 5 15:09 1979 /Cerl/pams/sourcelboot.c Page 2

57 be large enoulh for some time to come* ano could be set stilt
58 highir without exceedina core limitations. However. somebody
59 probably ought to rewrite this routine so that it loops to
60 write the output file in segments. That is* the routine wouLd
61 make a complete pass through Loth inout files in each iteration.
6Z Only those values in the current segment range would be marked
63 in the "check" array.
64
65 CALLS:
66
67 Unix calls:
68

69 seek()
75 read()
71 write()
72
?3 CALLED BY:
74
75 setect()
76
77 HISTORY:
78
79 written by Dan Putnam - felt 197
80

82
83
P4 #Jefine AND 1
85 #define OR 2
86 #define EXCEPT 3
37 #define MASKA 01
2E #define MASKB 010
89

9: Nde#
4
ine SPMAX SCOo

91 #define LSTSIZ Z56
92
93 boot(fdafidbfideoopcode)
94 int fide; I* tile descriptor of first operand '1
95 int fidb; /* file oescriptor of second cperano *1
96 mnt lidc; /* file aescriptor of resultant '1

97 int opcodt; I* AND, OR or EXCPT '1

96
99 char checkCSPI*AX]; /* check List for mesbership in Lists *1

100 int tist[LSTSIZ3; I* tuffer for input and output Lists *I

11 register nt j; I* fast Loop counter *1

152 relister char *checkptr; I points thru check array *1
1J3 register int spid; 1, id number of source permit in Lists *1
1C 4nt *listptr; I* points thru List buffer .1
105 int *endtist; I* marks end of list array 'I

106 int max&; /* max so id in file a *1

107 lat mxb; I* sax sp id in lile b *1
106 int mauc; Is upper bound of elements in result *

109 int count; I* for returning size of resultant file 01

110
111
112 I***e** first* clear check array *I

98

Jut 5 15:09 1979 Icerl/paosisourcel/oot.e Paje 3

113
114 checkptr = check;
115 j aSPRAY;
116 do
117 acheckptr** a 0;

119
123
121
122
123 /..**** run thru file a checking sp's found in List

124

125 seek(fidaPlO); I* make sure we qet whotc file *1

126 mala = -1; I* init to find max in file a '1

127

129 white((j
=

read(fida, List. LSTSIZ * sizeof(Atist))) > 0)
12) (

130 j = 2; I* j z number of ints read 'I

131
132 Listptr = List;

133
134 white(j-- 96 (spid a ,listptr*+) != -1)

135 (

136 maxa maxa > spia ? maxa spid;

137
138 check[spid] =1 MASKA;

139)
14.1 if(spid == -1)

141 break;
142
143
144
145

146 /**** run thru tiLe b checking spis found in List *1

141
148 seek(fidb,O,); I* make sure we get whote file *1

14q maxb = -1; /* init to find max in lile b

151 white((j = read(fidb, list, LSTSIZ * sizeoff*list))) > C)

152 (

153 j a/ 2; /* j a number of ints read *1

154
155 listptr = List;

156
157 jhiteQ|-- 9F. (spid

=
ttistptr-) !a -1)

15b {

159 maxb = maxb > spid ? mexb : spd;

16U

161 check~spid] aj MASKB;

162)
163 if(spld 2X -1)

164 oreak;

165
166)
161
168 I****** now run thru the check array to get output fiLe *1

99

Jul, 5 1S:09 1979 /C~rL/Pamts/::::;:/boat.c Page 4t .a

173 seek(fidCoOP0); /* start at the beginning of the fiLe '
* 174 count a0; /*iitcontozr

175
* 176

1?
178 switch(opcode)
179 (
180
181 case AND:

m~ aic maxa < maxb ? mea maxb;
* 183

1.84 for~i D ; j <= maxc. j++)
185 1(i
186 if(*checkptr** = (1NASKA I MASKO))
187(
188
199 *Listptr#** j
190 count..;
191 it(Listptr >a endList)
192 write(fidco(tistptr a ist),Cendtist -List) *2);
193)
194
195 break; It end case AND a
196
197 case OR:
19E manc =maxa .3 oamb ? maxa :maxb;
199
290 tor(j 2 0; j (2 maxc: ice)
201(
MC Mt *checkptr+* != 0)

2A4

ZL5 *tistgtr* Z J
2C6 count,.;*
2C.? jt(tistptr >= endList)
208 write(fidctalistptr tist).Cendtist -List) *2);
Z09
210 1
211 break; I' end case OR *I
212
213 case EXCEPT:
214 malc Zmmax&;
215
216 forj x ; j <= maxc. J*+)
217?
218 i** if a and not b *
219* 3
220) if((*check~tr It IASVKA) 99 !(tcheckpte 9 MASKS))

223

224 count+#;

100~

Jit 5 15:09 1979 /certlpams/source/boot.c Page 5

225 if(Listptr >z endtist)
226 write(fidc*(tistptr = tist)#CendList - list) * 2);
Z27)
228 checkptr+*;
229)
230 break; /* end Case EXCEPT 'i
231
232
233
234
235
236 /****** terminate list and write out the repainder *1

237
S23 8 Atist-tr4+ = -1;
230

240 write(fidc, List, (tistptr - List) * 2);
241
242 return(count),
243

101

CERL DISTRIBUTION

Chief of Engineers Inst. for Water Res.. ATTN: Library HSC
ATTN: Tch Monitor HO USAHSC, ATTN: HSLO-F
ATTN: DAEN-RD Army Insti. and Major Activities (COMUS) ATTN: Facilities Engineer
ATTN: DAEN-MP DARCOM - Dir., Inst.. 11 Svcs. Fitzsimons Army Medical Center
ATTN: DAEN-ZC ATTN: Facilities Engineer Walter Reed Army Medical Center
ATTN: DAEN-CW ARRADCOM
ATTN: fAER-RM Aberdeen Proving Ground USACC
ATTN: DAEN-CCP Amy Macls. and Mechanics Res. Ctr. ATTH. Facilities [ngineer
ATTN: DAEN-ASI-L (2) Corpus Christi Army Depot Fort Huachuca

Harry Diamond Laboratories Fort Ritchie
US Army Engineer Districts Dugway Proving Ground
ATTN: Library Jefferson Proving Ground KTMC
Alaska Fort Monmouth HQ, ATTN: MTMC-SA
Albatin Letterkenny Army Depot ATTN: Facilities Engineer
Albuquerque Natick Research and Den. Ctr. Oakland Army Base
Baltimore New Cumberland Army Depot Bayonne OT
Buffalo Pueblo Army Depot Sunny Point MOT
Charleston Red River Army Depot
Chicago Redstone Arsenal US Military Academy
Detroit Rock Island Arsenal ATTN: Facilities Engineer
Far East Savannah Army Depot
Fort Worth Sharpe Army Depot USAES, Fort Belvoir, VA
Galveston Seneca Army Depot ATTN: FE Mgmt. Br.
Huntington Tobyhanna Army Depot ATTN: Const. Mgmt. Br.
Jacksonville Toele Army Depot ATTN: Engr. Library
Japan Waterv let Arsenal
Jidda Yuma Proving Ground Chief Inst. Div., I&SA, Rock Island. IL
Kansas City White Sands Missile Range
Little Rock USA ARRCOMV, ATTN: Dir., Instl A Svc
Los Angeles FORSCOM TARCOM, Fac. Div.
Louisville FORSCOM Engineer, ATTN: AFEN-FE TECOM. ATTN: DRSTE-LG-F
Memphis ATTN: Facilities Engineers TSARCOM, ATTN: STSAS-F
Mobile Fort Buchanan NARAD CON, ATTN: DRONA-F
Nashville Fort Bragg AMMRC, ATTN: DRXMR-WE
New Irleans Fort Campbell
New York Fort Carson HQ. XVIII Airborne Corps and
Norfolk Fort Devens Ft. Bragg
Omaha Fort Drum ATTN: AFZA-FE-EF
Philadelphia Fort Hood
Pittsburgh Fort Indiantowm Gap HQ, 7th Army Training Command
Portland Fort Irwin ATTN: AETTG-DEH (5)
Riyadh Fort Sam Houston
Rock Island Fort Lewis HQ USAREUR and 7th Army
Sacramento Fort McCoy ODCS/Engineer
San Francisco Fort McPherson ATTN: AEAEN-EH (4)
Savannah Fort George G. Meade
Seattle Fort Ord V Corps
St. Louis Fort Polk ATTN: AETVDEH (5)
St. Paul Fort Richardson
Tulsa Fort Riley VII Corps
Vicksburg Presidio of San Francisco ATTN: AETSDEH (5)
Walla Walla Fort Sheridan
Wilmington Fort Stewart 21st Support Command

Fort Wainwright ATTN: AEREH (5)
US Army Engineer Divisions Vancouver Bks.
ATTN: Library US Army Berlin

Europe TRADOC ATTN: AEBA-EN (2)
Huntsville HQ. TRADOC, ATTN: ATEN-FE
Lower Mississippi Valley ATTN: Facilities Engineer US Army Southern European Task Force
Middle East Fort Belvoir ATTN: AESE-ENG (5)
Middle East (Rear) Fort Benning
Missouri River Fort Bliss US Army Installation Support Activity,
New England Carlisle Barracks Europe
North Atlantic Fort Chaffee ATTN: AEUES-RP
North Central Fort Dix
North Pacific Fort Eustis 8th USA, Korea
Ohio River Fort Gordon ATTN: EAFE
Pacific Ocean Fort Hamilton Cdr, Fac Engr Act (8)
South Atlantic Fort Benjamin Harrison AFE, Yongsan Area
South Pacific Fort Jackson AFE, 20 Inf Div
Southwestern Fort Knox AFE, Area II Spt Det

Fort Leavenworth AFE, Cp Humphreys
Waterways Experiment Station Fort Lee AFE. Pusan
ATTN: Library Fort McClellan AFE, Taegu

Fort Monroe
Cold Regions Research Engineering Lab Fort Rucker DLA ATTN: DLA-WI
ATTN: Library Fort Sill

Fort Leonard Wood USA Japan (USARJ)
US Government Printing Office Ch, FE Di, AJEN-FE
Receiving Section/Depository Copies (2) INSCON - Ch, Instl. Div. Fac Engr (Honshu)

ATTN: Facilities Engineer Fac Engr (Okinawa)
Defense Technical Information Center Vint Hill Farms Station
ATTN: DDA (12) Arlington Hall Station ROK/US Combined Forces Command

ATTN: EUSA-HHC-CFC/Engr
Engineering Societies Library WESTCOM

New York, NY ATTN: Facilities Engineer
Fort Shafter

FESA, ATTN: Library
NOW

ETL, ATTN: Library ATTN: Facilities Engineer
Cameron Station

Engr. Studies Center, ATTN: Library Fort Lesley J. McNair
Fort Mar

I

iN
,
Branch Distribution

ia.tinny Arsenal AS Amy Engineer District McClellan AMB, CA 95652
AIIN: tIJPFA-VI3 Wilmington 285? APG/DC (LA David C. Hall)

ATTN: Chief, SAEN-PP

litreviorate of facilities Inqr ATTI: Chief, SAWEN-PM Peterson AFB, CO 80914
Miami, ft 14004 ATTN: Chief, SAWEN-E HQ ADCOM/DEMUS (M. J. Kerby)

Charleston

DARLM TIT-tim ATTN: Chief, Engr Div Tinker AFB, OK 13145
Aiv

)
New York 09110 Savannah 2854 ABG/DEEt (John Wall)

ATTN: Chief. SASAS-L

West Point, NY 10996 Jacksonville Patrick AFB, FL 32925
ATTN: Dept of Mechanics ATTN: Env. Res. Br. Base CE Sqdn (Janes I. Burns)
ATTN: Library Nashville

ATTN: Chief. ORNED-P AF/RDXT
1HDA (SGRD-EDE) Memphis WASH DC 20330

ATTM: Chief, LIHED-PR
Chief of Engineers Vicksburg AFESC/PRT
ATTN: DAEN-MPO-B ATTN: Chief, Engr Div Tyndall AFB, FL 32403
ATN: OAEN-MfR Louisville
ATTN: DAEN-MPO-U ATTN: Chief. Engr Div Little Rock AFB
AfTN: DAEN-MPZ-A St. Paul ATTN: 314/DEEE (Mr. Gillham)

ATTN: DAEN-RDL ATTN: Chief. ED-ER
ATTN: DAEN-ZCE Chicago Kirtland AFB, Nf 87117

ATTN: Chief, NCCPD-ER ATTN: DIP
National Defense Headquarters St. Louis
Director General of Construction ATTN: Chief, ED-B US Naval Oteanographic Office
Ottawa, Ontario K1AOK2 Kansas City ATTN: Library
Canada ATTN: Chief, Engr Div Bay St. Louis, MS 39522

Onaha
Airports and Const. Services Dir. ATTN: Chief. Engr Div Naval Facilities Engr Command
Technical Information Reference Little Rock ATTN: Code 04
Centre ATTN: Chief, Engr Div Alexandria, VA 22332

KAOL, Transport Canada Building Tulsa
Place de Ville, ATTN: Chief, Engr Dlv Port Hueneme, CA 93043
Ottawa. Ontario KIAON8 Fort Worth ATTN: Library (Code LOAA)
Canada ATTN: Chief, SWFED-PR ATTN: Morell Library

ATTN: Chief, SWFED-F
British Liaison Officer (5) Galveston Washington, DC

0.'. Ar-y Mobility Equipment ATTN: Chief, S'GAS-L ATTN: Building Research Advisory Board
Reserach ind Des Center ATTN: Chief, SWGCO-M ATTN: Transportation Research Board

I,. Bo loir, VA 22060 Albuquerque ATTN: Library of Congress (2)
ATTN: Chief, Engr Div ATTN: Dept. of Transportation Library

Aberdeen Proving Ground, NO Z1005 Los Angeles
ATTN: AMXHF/J. 0. eisz ATTN: Chief. SPLED-E Dept of Transportation

San Francisco ATTN: W. N. Lofroos, P. E.

It. Belvoir, VA 22060 ATTN: Chief, Engr Div Tallahassee, FL 32304
ATTN: Learning Resources Center Sacramento
ATTN: ATSE-TD-TL (2) ATT: Chief, SPtED-D LT Neil H. Hall, CiC, AISN (Code 100)

ATTN: Kingman Bldg. Library Far East 884-6366
ATTN: MAJ Shurb (4) ATTN: Chief, Engr Div US Navy Public Works Center

Seattle Box 6, FPO San Francisco 96651

Ft. Leavenworth, KS 66027 ATTN: Chief, NPSEN-PL-WC
ATZLCA-SA/F. Wolcott ATTN: Chief, NPSEN-PL-ER

ATTN: Chief, IPSEN-PL-BP 1q AIFSC

Ft. Monroe, VA 23651 Walla Walla AIT: KNPCPT B. "awkin. (100)

ATOM: AIIM-AD (3) ATTN: Chief. Engr Div ITTN ISTIl.1tbrary (2)

ATTN: ATEN-PE-E Alaska
ATT: Chief, NPASA-R

Ft. Lee. VA 23801
ATTN: DRXMC-D (2) US Amy Engineer Division

New England
NO FBSCOI ATTN: Laboratory
ATTN: AEN-CD ATTN: Chief. NEDED-E

Ft. mcRierson, GA 30330 South Atlantic
ATTN: Chief, SADER-E

Sth US Amy Huntsville
ATTN: AKFB-LG-E ATTN: Chief, HNDED-CS

ATTN: Chief, HNDED-M
6th US Amy Lower Mississippi Valley
ATTN: AlKC-EN ATTN: Chief, PD-R

Ohio River

US Army Engineer District ATTN: Chief, Engr Div

New York North Central

ATTN: Chief, NANEN-E ATTN: Chief, Engr Planning Br.

ATTN: Chief, Design Br. Southwestern
Pittsburgh ATTN: Chief. SWICO-O

ATTN: Chief. Engr Div South Pacific
Philadelphia ATTN: Laboratory
ATTN: Chief, NAPER-E Pacific Ocean

Baltimore ATTN: Chief, Engr Div
ATTN: Chief, Engr Div ATTN: Chief, PODED-P

Norfolk North Pacific
ATTN: Chief, NAOEN-M ATTN: Laboratory

Huntington ATTN: Chief, Engr Div
ATTN: Chief. ORHED-P

Its

Webster. Ronald Dwight
Interagency/Intergovernmental Coordination for Environmental Planning (JICEP):

systms considerations / by R. D. Webster, D. E. Putnam. -- Champaign. IL : Con-
struction Engineering Research Laboratory ; Springfield, VA : available from NTIS.
1g0.

101 p.; 27 cm. (Technical report ; N-87)

1. State governments -- directories-data processing. 2. Environmental policy-
directories-data processing. 3. U.S. Air Force-environmental aspects. I. Putnam,
Daniel E. I. Title. 111. Series: U.S. Army Construction Engineering Research
Laboratory. Technical report ; N-87.

- .- - - - ~ - - -

